之前找了很多利用遗传算法优化聚类数K值的程序,结果网上一堆程序不能用,只能自己写一个了。
该程序是基于matlab编写的,调用了kmeans函数和遗传算法工具箱,这个函数主要部分是在定义遗传算法的适应度函数上,最后取整数就是K值了。
程序附带了自己定义的排序函数,该函数的作用是先对一个矩阵里A列进行排序,然后在根据排序结果对B列进行排序,这样得到的最后结果是A\B列都排序的矩阵。
2024/2/14 20:39:32 2KB 遗传算法 kmeans K值优化 排序函数
1
实验描述:对指定数据集进行聚类分析,选择适当的聚类算法,编写程序实现,提交程序和结果报告。
数据集:IrisDataSet(见附件一),根据花的属性进行聚类。
数据包括四个属性:sepallength花萼长度,sepalwidth花萼宽度,petallength花瓣长度,petalwidth花瓣宽度。
其中第五个值表示该样本属于哪一个类。
样本点间的距离直接用向量的欧氏距离。
2024/2/14 17:19:40 15KB 聚类分析
1
MATLAB神经网络30个案例分析(高清+源码)包括BP、RBF、SVM、SOM、Hopfield、LVQ、Elman、小波等神经网络。
MATLAB神经网络30个案例分析(高清+源码)该书共有30个MATLAB神经网络的案例(含可运行程序),包括BP、RBF、SVM、SOM、Hopfield、LVQ、Elman、小波等神经网络;
还包含PSO(粒子群)、灰色神经网络、模糊网络、概率神经网络、遗传算法优化等内容。
该书另有31个配套的教学视频帮助读者更深入地了解神经网络。
本书可作为本科毕业设计、研究生项目设计、博士低年级课题设计参考书籍,同时对广大科研人员也有很高的参考价值。
-------目录第1章P神经网络的数据分类——语音特征信号分类第2章BP神经网络的非线性系统建模——非线性函数拟合第3章遗传算法优化BP神经网络——非线性函数拟合第4章神经网络遗传算法函数极值寻优——非线性函数极值寻优第5章基于BP_Adaboost的强分类器设计——公司财务预警建模第6章PID神经元网络解耦控制算法——多变量系统控制第7章RBF网络的回归——非线性函数回归的实现第8章GRNN的数据预测——基于广义回归神经网络的货运量预测第9章离散Hopfield神经网络的联想记忆——数字识别第10章离散Hopfield神经网络的分类——高校科研能力评价第11章连续Hopfield神经网络的优化——旅行商问题优化计算第12章SVM的数据分类预测——意大利葡萄酒种类识别第13章SVM的参数优化——如何更好的提升分类器的性能第14章SVM的回归预测分析——上证指数开盘指数预测第15章SVM的信息粒化时序回归预测——上证指数开盘指数变化趋势和变化空间预测第16章自组织竞争网络在模式分类中的应用——患者癌症发病预测第17章SOM神经网络的数据分类——柴油机故障诊断第18章Elman神经网络的数据预测——电力负荷预测模型研究第19章概率神经网络的分类预测——基于PNN的变压器故障诊断第20章神经网络变量筛选——基于BP的神经网络变量筛选第21章LVQ神经网络的分类——乳腺肿瘤诊断第22章LVQ神经网络的预测——人脸朝向识别第23章小波神经网络的时间序列预测——短时交通流量预测第24章模糊神经网络的预测算法——嘉陵江水质评价第25章广义神经网络的聚类算法——网络入侵聚类第26章粒子群优化算法的寻优算法——非线性函数极值寻优第27章遗传算法优化计算——建模自变量降维第28章基于灰色神经网络的预测算法研究——订单需求预测第29章基于Kohonen网络的聚类算法——网络入侵聚类第30章神经网络GUI的实现——基于GUI的神经网络拟合、模式识别、聚类MATLAB
2024/2/14 6:12:17 29.15MB MATLAB 神经网络 案例分析 RBF
1
dobbyscan一个非常快速基于密度的地理点聚类库
2024/2/12 18:44:47 4KB JavaScript开发-地图
1
模式识别聚类分析中的最大最小聚类方法,对给定的样本数据(7个),通过聚类分类,返回类别编号,代码有注释能直接运行主函数。
2024/2/12 2:56:12 835B 最大最小 聚类 代码
1
包含灰序列生成、灰色关联分析、灰色聚类分析、灰色预测模型、灰色决策分析等包含灰序列生成、灰色关联分析、灰色聚类分析、灰色预测模型、灰色决策分析等
2024/2/11 18:17:11 1.72MB 灰色模型
1
FCM+KFCM模糊C均值聚类分析算法,matlab代码,有界面,有图片,运行正常,附pdf说明文档
2024/2/6 2:03:39 393KB FCM+KFCM 模糊C均值 聚类
1
采用可视化编程工具(如Matlab、Java等)实现一种数据挖掘技术(如K-means聚类、EM聚类等),并进行其挖掘过程和结果的可视化展现,最后采用一组数据,展示其可视化数据挖掘过程和结果。
2024/2/5 19:17:11 573KB 数据挖掘 Kmeans 数据可视化 Androi
1
配套的相关资料,好东西。
菜菜的课程,看了就知道是好东西了。
01决策树课件数据源码02随机森林03数据预处理和特征工程04主成分分析PCA与奇异值分解SVD05逻辑回归与评分卡06聚类算法Kmeans07支持向量机上08支持向量机下09回归大家族:线性回归,岭回归,Lasso与多项式回归010朴素贝叶斯011XGBoost
2024/2/5 9:49:43 153.32MB 菜菜 机器学习 sklearn
1
MATLAB源码集锦-动态聚类或迭代自组织数据分析算法(ISODATA)
2024/2/4 23:44:48 9KB 动态聚类 迭代自组织 MATLAB ISODATA
1
共 546 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡