Greenplum的架构采用了MPP(大规模并行处理)。
在MPP系统中,每个SMP节点也可以运行自己的操作系统、数据库等。
换言之,每个节点内的CPU不能访问另一个节点的内存。
节点之间的信息交互是通过节点互联网络实现的,这个过程一般称为数据重分配(DataRedistribution)。
与传统的SMP架构明显不同,通常情况下,MPP系统因为要在不同处理单元之间传送信息,所以它的效率要比SMP要差一点,但是这也不是绝对的,因为MPP系统不共享资源,因此对它而言,资源比SMP要多,当需要处理的事务达到一定规模时,MPP的效率要比SMP好。
这就是看通信时间占用计算时
2024/11/11 5:46:03 37.53MB Greenplum 数据库的使用 MMP开发
1
JUnit—Java单元测试必备工具,学习资料,含简单介绍。
2024/11/10 14:49:28 7.29MB JUnit
1
内容简介  这是本严谨的教程,它可帮助您缩短设计周期并改善器件效率。
书中设计工程师AndreiGrebennikov告诉您如何与计算机辅助设计技术结合在一起进行分析计算,在处理与生产的过程中提高效率;
使用了近300个详细的图表、曲线、电路图图示说明,提供给您所需要的、改善设计的所有信息。
  本书主要阐述设计射频与微波功率放大器所需的理论、方法、设计技巧,以及有效地将分析计算与计算机辅助设计相结合的优化设计方法。
它为电子工程师提供了几乎所有可能的方法,以提高设计效率和缩短设计周期。
书中不仅注重基于最新技术的新方法,而且涉及许多传统的设计方法,这些技术对现代无线通信系统的微电子核心是至关重要的。
主要内容包括非线性电路设计方法、非线性主动设备建模、阻抗匹配、功率合成器、阻抗变换器、定向耦合器、高效率的功率放大器设计、宽带功率放大器及通信系统中的功率放大器设计。
本书适合从事射频与微波功率放大器设计的工程师、研究人员及高校相关专业的师生阅读。
目录第1章双口网络参数1.1传统的网络参数1.2散射参数1.3双口网络参数间转换1.4双口网络的互相连接1.5实际的双口电路1.5.1单元件网络1.5.2Ⅱ形和T形网络1.6具有公共端口的三口网络1.7传输线参考文献第2章非线性电路设计方法2.1频域分析2.1.1三角恒等式法2.1.2分段线性近似法2.1.3贝塞尔函数法2.2时域分析2.3NewtOn.Raphscm算法2.4准线性法2.5谐波平衡法参考文献第3章非线性有源器件模型3.1功率MOSFET管3.1.1小信号等效电路3.1.2等效电路元件的确定3.1.3非线性I—V模型3.1.4非线性C.V模型3.1.5电荷守恒3.1.6栅一源电阻3.1.7温度依赖性3.2GaAsMESFET和HEMT管3.2.1小信号等效电路3.2.2等效电路元件的确定3.2.3CIJrtice平方非线性模型3.2.4Curtice.Ettenberg立方非线性模型3.2.5Materka—Kacprzak非线性模型3.2.6Raytheon(Statz等)非线性模型3.2.7rrriQuint非线性模型3.2.8Chalmers(Angek)v)非线性模型3.2.9IAF(Bemth)非线性模型3.2.10模型选择3.3BJT和HBT汀管3.3.1小信号等效电路3.3.2等效电路中元件的确定3.3.3本征z形电路与T形电路拓扑之间的等效互换3.3.4非线性双极器件模型参考文献第4章阻抗匹配4.1主要原理4.2Smith圆图4.3集中参数的匹配4.3.1双极UHF功率放大器4.3.2M0SFETVHF高功率放大器4.4使用传输线匹配4.4.1窄带功率放大器设计4.4.2宽带高功率放大器设计4.5传输线类型4.5.1同轴线4.5.2带状线4.5.3微带线4.5.4槽线4.5.5共面波导参考文献第5章功率合成器、阻抗变换器和定向耦合器5.1基本特性5.2三口网络5.3四口网络5.4同轴电缆变换器和合成器5.5wilkinson功率分配器5.6微波混合桥5.7耦合线定向耦合器参考文献第6章功率放大器设计基础6.1主要特性6.2增益和稳定性6.3稳定电路技术6.3.1BJT潜在不稳定的频域6.3.2MOSFET潜在不稳定的频域6.3.3一些稳定电路的例子6.4线性度6.5基本的工作类别:A、AB、B和C类6.6直流偏置6.7推挽放大器6.8RF和微波功率放大器的实际外形参考文献第7章高效率功率放大器设计7.1B类过激励7.2F类电路设计7.3逆F类7.4具有并联电容的E类7.5具有并联电路的E类7.6具有传输线的E类7.7宽带E类电路设计7.8实际的高效率RF和微波功率放大器参考文献第8章宽带功率放大器8.1Bode—Fan0准则8.2具有集中元件的匹配网络8.3使用混合集中和分布元件的匹配网络8.4具有传输线的匹配网络8.5有耗匹配网络8.6实际设计一瞥参考文献第9章通信系统中的功率放大器设计9.1Kahn包络分离和恢复技术9.2包络跟踪9.3异相功率放大器9.4Doherty功率放大器方案9.5开关模式和双途径功率放大器9.6前馈线性化技术9.7预失真线性化技术9.8手持机应用的单片cMOS和HBT功率放大器参考文献
2024/11/4 13:49:37 8.08MB 微波功率放大器
1
关于LaravelLaravel是一个具有表达力,优雅语法的Web应用程序框架。
我们认为,发展必须是一种令人愉快的,富有创造力的经历,才能真正实现。
Laravel减轻了许多Web项目中使用的常见任务,从而减轻了开发过程中的痛苦,例如:。

用于和存储的多个后端。
富有表现力,直观的。
数据库不可知。


Laravel易于访问,功能强大,并提供大型,强大的应用程序所需的工具。
学习LaravelLaravel拥有所有现代Web应用程序框架中最广泛,最全面的和视频教程库,因此轻而易举地开始使用该框架。
如果您不想读书,可以使用帮助。
Laracasts包含1500多个视频教程,涉及各种主题,包括Laravel,现代PHP,单元测试和JavaScript。
深入我们全面的视频库,提高您的技能。
Laravel赞助商我们要感谢以下赞助商为Laravel开发
2024/10/30 16:37:36 186KB PHP
1
如何计划和建设项目本文介绍了我几年来一直在计划如何构建任何项目的过程,无论该项目是小型个人项目还是具有一组开发人员的大型项目。
这也类似于我们在团队中使用的过程。
首先,在开始构建新项目之前,我们创建了三个非常简短的工件。
单页页面,工作流程图和任务列表。
根据项目的规模,这通常需要一天或更少的人才能完成。
这些工件按此顺序创建。
首先,以人为单位对项目进行一页的描述。
任何人都应该能够阅读此页面,并且知道该项目将要做什么。
接下来,创建工作流图,它实际上是序列,类和工作流图的组合。
一旦完成了工作流图,就会从工作流图创建任务列表,并将任务分解为单日工作单元。
任务列表告诉我们从哪里开始,以及每天要做的其他事情,直到项目完成。
下面以一个小项目为例描述这三个工件。
如何编写一页单页纸通常是一页或更少的页面,以人工方式描述该项目,因此阅读该页面的任何人都将知道该项目将做什么。
我通
5.75MB HTML
1
基于Android的数独游戏,数独游戏中的公共资源文件主要有字符串资源文件、数组资源文件和颜色资源文件,设置完公共资源文件之后,在开发程序时,用户即可很方便的进行调用。
本节将对数独游戏中的公共资源文件进行讲解在编写项目代码之前,需要制定好项目的文件夹组织结构,如不同的Java包存放不同的窗体、公共类、数据模型、工具类或者图片资源等,这样不但可以保证团队开发的一致性,也可以规范系统的整体架构。
创建完程序中可能用到的文件夹或者Java包之后,在开发时,只需将创建的类文件或者资源文件保存到相应的文件夹中即可。
数独游戏的文件夹组织结构如图B-1所示。
数独游戏是一款比较传统的游戏,它由81个(9行*9列)单元格组成,玩家要试着在这些单元格中填入1~9的数字,使数字在每行、每列和每区(3行*3列的部分)中都只出现一次,游戏开始时,部分单元格中已经填入一些已知的数字,玩家只需要在剩下的空单元格中填入数字。
2024/10/27 2:23:54 571KB VSOP.
1
用VHDL实现了一个简单的可以播放一小段音乐的程序。
因为EPM240只有240个逻辑单元,功能非常简单,可以循环播放一段声音,并且显示波形。
这里用了两个EPM240,要将两个共地,一个负责存储和显示,一个负责发出声音。
初学者水平有限,欢迎大家批评指正,给出更好的意见,共同提高。
2024/10/26 19:10:02 642KB VHDL LED彩灯 蜂鸣器
1
ERP项目实施系统(SAP)总结( 系统配置 单元测试 报表需求分析(用SPEC模板)(开发) 报表及接口方案设计 授权设计 报表接口开发 用户手册编写 集成测试完成 质量检查)
2024/10/26 15:16:06 24KB SAP,ERP,项目实施
1
关于ARM体系结构的MMU(内存管理单元)的详细描述,中译本,对英文不是很好的朋友很有帮助哦
2024/10/26 13:14:29 77KB mmu
1
这个是用于ansys生死单元法,采用体生热率热源,包含如何生成温度场动画
2024/10/25 12:14:24 10KB ANSYS
1
共 927 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡