本文针对火灾报警系统问题,建立熵权-topsis逻辑回归等数学模型,旨在通过所建模型来选取可靠的探测器、提高报警准确率及改进各辖区综合管理水平,从而减少我国火灾事故。
针对问题一,首先根据地址、机号和回路,确定真实火灾数为418起。
接着根据题目要求,基于可靠性和故障率两个指标建立综合评价模型。
由于可靠性为效益型指标,而故障率为成本型指标,故将故障率通过数学公式转换为效益型指标,即完善率。
指标确定后,运用熵权法确定各指标权重,最后利用topsis法构建各类型部件评价模型,对16种部件进行综合评价,帮助政府选择最可靠的5种火灾探测器类型,分别为光束感烟、手动报警按钮、智能光电探头、点型感温探测器、线性光束感烟。
针对问题二,建立基于logistic回归的区域报警部件类型智能研判模型。
本文选择故障次数、消防大队及探测器类型3个变量作为自变量,误报与否作为因变量,将消防大队和探测器类型两个无序分类变量变为虚拟变量,利用logistic回归模型预测辖区内某类型部件发出报警信息正确的概率,经检验模型的真实性为。
经检验结果有所偏差,故进行模型优化用woe值代替原值计算,使得结果愈加真实可靠。
2021/11/25 4:12:28 291KB 数学建模
1
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡