yolov4-deepsort使用YOLOv4,DeepSort和TensorFlow实现的对象跟踪。
YOLOv4是一种先进的算法,它使用深度卷积神经网络来执行对象检测。
我们可以将YOLOv4的输出输入这些对象检测到DeepSORT(带有DeepAssociationMetric的简单在线和实时跟踪)中,以创建一个高度精确的对象跟踪器。
关于对象的对象跟踪器的演示汽车上的对象跟踪器演示入门首先,请通过Anaconda或Pip安装适当的依赖项。
我建议使用GPU的人使用Anaconda路由,由于它可以为您配置CUDA工具包版本。
conda(推荐)#TensorflowCPUcondaenvcreate-fconda-cpu.ymlcondaactivateyolov4-cpu#TensorflowGPUcondaenvcreate-
2022/10/18 9:17:23 73.99MB Python
1
yolov4.cfgyolov4.weightsyolov4-tiny.cfgyolov4-tiny.weightscoco.names
2021/11/10 18:15:21 247.54MB yolov4-tiny.cfg yolov4.weights coco.names
1
从2018年Yolov3年提出的两年后,在原作者声名放弃更新Yolo算法后,俄罗斯的Alexey大神扛起了Yolov4的大旗。
YOLOv4原版论文,介绍了YOLOv4算法最新的研究成果。
YOLOv4功能远超YOLOv3。
2016/3/20 12:26:19 3.76MB YOLOv4
1
1、demo文件夹:YOLOv4目标检测算法针对MVI_40192文件夹数据集的处理效果,比较满意,车辆信息基本都能检测到。
2、road1_demo文件夹:YOLOv4+DeepSort算法,针对road1.mp4视频数据的目标跟踪、车流量计数效果。
人工统计车流量292辆(可能有偏差),算法统计车流量288辆。
3、road2_demo文件夹:YOLOv4+DeepSort算法,针对road2.mp4视频数据的目标跟踪、车流量计数效果。
人工统计车流量29辆,算法统计车流量29辆。
只需视频流车辆清晰、大小合适、轮廓完整,算法处理的精度挺高。
4、road1_tracking.mp4、road2_tracking.mp4:由目标跟踪处理结果合成的视频流。
***********************************************************************************************1、deepsort文件夹:含目标跟踪算法源码,包括:卡尔曼滤波、匈牙利匹配、边框类创建、Track类创建、Tracker类创建。
2、ReID文件夹:含特征提取算法源码,model_data存储着reid网络的结构、权重,feature_extract_model.py用于创建特征提取类。
3、YOLOv4文件夹:含目标检测算法源码,model_data存储yolov4网络配置、nets+utils用于搭建模型。
decode.py用于将检测结果解码。
4、car_predict.py、yolo.py:用于验证目标检测算法的效果。
5、main.py:整个项目的运行入口,直接运行main.py,就可以调用YOLOv4+DeepSort,处理视频流信息,完成目标跟踪和车流量统计。
1
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡