这是这几天刚刚和我的小组完成的操作系统页面置换算法,完全是手巧,没有复制网上资源,是一个完整的文档,已经通过了老师的验收,付出了心血,加了很多注释。
希望您能够帮助到大家,谢谢。
2024/11/5 2:19:29 370KB 页面置换算法
1
一、实验题目:页面置换算法(请求分页)二、实验目的:进一步理解父子进程之间的关系。
1)理解内存页面调度的机理。
2)掌握页面置换算法的实现方法。
3)通过实验比较不同调度算法的优劣。
4)培养综合运用所学知识的能力。
页面置换算法是虚拟存储管理实现的关键,通过本次试验理解内存页面调度的机制,在模拟实现FIFO、LRU等经典页面置换算法的基础上,比较各种置换算法的效率及优缺点,从而了解虚拟存储实现的过程。
将不同的置换算法放在不同的子进程中加以模拟,培养综合运用所学知识的能力。
三、实验内容及要求这是一个综合型实验,要求在掌握父子进程并发执行机制和内存页面置换算法的基础上,能综合运用这两方面的知识,自行编制程序。
程序涉及一个父进程和两个子进程。
父进程使用rand()函数随机产生若干随机数,经过处理后,存于一数组Acess_Series[]中,作为内存页面访问的序列。
两个子进程根据这个访问序列,分别采用FIFO和LRU两种不同的页面置换算法对内存页面进行调度。
要求:1)每个子进程应能反映出页面置换的过程,并统计页面置换算法的命中或缺页情况。
设缺页的次数为diseffect。
总的页面访问次数为total_instruction。
缺页率=disaffect/total_instruction命中率=1-disaffect/total_instruction2)将为进程分配的内存页面数mframe作为程序的参数,通过多次运行程序,说明FIFO算法存在的Belady现象。
2024/10/5 7:39:41 3.68MB 操作系统 上机 实验报告 页面置换
1
DES加密算法的流程,原理,代码,置换表,执行结果等
2024/9/10 10:05:39 146KB DES算法
1
3.2_3_页面置换算法.pdf
2024/8/30 18:56:06 288KB 操作系统
1
先来先服务FCFS,最短寻道时间优先SSTF,SCAN和循环SCAN算法模拟磁道访问过程
1
一、实验目的1、了解虚拟存储器的基本原理和实现方法。
2、掌握几种页面置换算法。
二、实验内容设计模拟实现采用不同内外存调度算法进行页面置换,并计算缺页率。
三、实验原理内存在计算机中的作用很大,电脑中所有运行的程序都需要经过内存来执行,如果执行的程序很大或很多,就会导致内存消耗殆尽。
为了解决这个问题,Window中运用了虚拟内存技术,即拿出一部分硬盘空间来充当内存使用,当内存占用完时,电脑就会自动调用硬盘来充当内存,以缓解内存的紧张。
虚拟存储器是指具有请求调入功能和置换功能,能从逻辑上对内存容量加以扩充的一种存储器系统。
它是采用一定的方法将一定的外存容量模拟成内存,同时对程序进出内存的方式进行管理,从而得到一个比实际内存容量大得多的内存空间,使得程序的运行不受内存大小的限制。
虚拟存储区的容量与物理主存大小无关,而受限于计算机的地址结构和可用磁盘容量。
虚拟内存的设置主要有两点,即内存大小和分页位置,内存大小就是设置虚拟内存最小为多少和最大为多少;
而分页位置则是设置虚拟内存应使用那个分区中的硬盘空间。
1.最佳置换算法(OPT):选择永不使用或是在最长时间内不再被访问(即距现在最长时间才会被访问)的页面淘汰出内存。
2.先进先出置换算法(FIFO):选择最先进入内存即在内存驻留时间最久的页面换出到外存。
3.最近最久未使用置换算法(LRU):以“最近的过去”作为“最近的将来”的近似,选择最近一段时间最长时间未被访问的页面淘汰出内存
2024/8/5 11:07:17 51KB 虚拟存储器(OPT FIFO LRU) OPT FIFO LRU
1
实现OPT、LRU、FIFO以及Clock四种不同的页面置换策略,界面良好
2024/7/17 3:20:38 26KB 置换算法
1
操作系统的课程设计,文档中包含关键源码实现了以下调度算法ShortestJobFirstShortestRemainingTimeNextPriorityRoundRobinMultipleQueues和以下页面置换算法NRU(NotRecentlyUsed)SC(SecondChance)ClockWorkingSetAging
2024/7/15 22:44:11 40KB Nachos,虚存,调度
1
MaxonCINEMA4DStudioR22是由德国Maxon设计公司开发的一款高效、快速、稳定和易用的专业三维设计工具,包含GPU渲染器Prorender、生产级实时视窗着色、超强破碎、场景重建等诸多新功能。
MaxonCINEMA4DStudioR22提供了优秀工具和诸多提升,你可立即将其投入工作并一瞥未来的根基。
设计师因其快速、简单、易用的工作流程,以及坚如磐石的稳定性而选择MaxonCINEMA4DStudioR22,同时22可以让你的工作流程更加快速和可靠,新特性也会让你的视野变得更加开阔。
MaxonCINEMA4DStudioR19中文版MaxonCINEMA4DStudioR22中文版今日的工具,明日的技术Cinema4DRelease22提供了优秀工具和诸多提升,你可立即将其投入工作并一瞥未来的根基。
设计师因其快速、简单的工作流程,以及坚如磐石的稳定性而选择Cinema4D,同时Release19可以让你的工作流程更加快速和可靠,新特性也会让你的视野变得更加开阔。
工作流程Cinema4D快速简单的工作流程总是让加快设计速度变得简单。
Release19的准渲染视窗和其他极佳的工作流程改进,会让你比以往更快地准备创意稿给客户审批。
视窗新基于物理的视窗具备实时反射和景深你所看到的景深和屏幕空间反射是实时的渲染结果,可以更简单精准的对地面、灯光和反射进行可视化的设置。
Release19除了屏幕空间环境吸收和实时置换以外,还添加了基于屏幕空间的反射和OpenGL景深效果。
开启OpenGL观察看起来很好,你可以用它来输出新支持的原生MP4作为预览渲染,直接给客户审批。
LOD(细节级别)对象使用新的LOD对象可最大程度提升视窗或渲染速度,创建新类型的动画或准备优化游戏资源。
你可以根据屏幕大小、摄像机距离和其他因素自动简化对象和层级结构。
直观的新界面元素让定义和管理LOD设置更简单,LOD能够通过导出FBX用于市面上主流的游戏引擎。
新媒体核心作为我们的核心现代化工作的一部分,Cinema4D支持图像、视频和音频的格式已经完全重写了,速度和内存效率得到了增强。
除了QuickTime外Cinema4D现在本地支持MP4,比以往更容易提供预览渲染、视频纹理或运动跟踪的画面。
所有导入和导出的格式都比以往更加全面且功能强大。
交换格式更新通过FBX和Alembic格式导出LOD和选择对象。
Alembic文件新支持的次帧插值可进行Re-time并渲染准确的运动模糊。
新功能高亮显示通过高亮显示新功能可快速识别R19、R18的新特性或特定的教学。
分裂更加简单泰森分裂可以简单的进行程序化分裂对象–在Release19你可以控制动力学与连接器,将碎片粘合在一起,添加裂缝和更多的细节。
球型摄像机渲染”虚拟“现实R19提供了渲染和体验渲染的新方法–利用强大的GPU进行快速、好看的OpenGL预览,或使用ProRender进行基于物理的最终高质量渲染。
准备加入虚拟现实革命?使用R19的球形相机轻松渲染360°VR视频。
释放你显卡的力量来创建物理上精确的最终渲染。
AMD的RadeonProRender技术无缝集成到R19中,支持Cinema4D的标准材质、灯光和摄像机。
无论你是在最新的Mac系统中使用强大的AMD芯片,还是在Windows中使用NVIDIA和AMD显卡,你都可以享受跨平台、深度集成的解决方案,具有快速、直观的工作流程。
交互式渲染将ProRender附加到任何视窗,并像其他视窗一样使用它。
你可以在重新排列物体、调整相机、调整材质和照明时获得即时反馈。
进程式渲染整个图像,或在高分辨率渲染时使用区块式渲染以更好地进行内存管理。
ProRender可完全使用你系统中所有的显卡,无论你是使用具有多张Radeon的MacPro,还是具有AMD或NVIDA卡的Windows系统。
深入集成使用Cinema4D的材质、灯光和摄像机。
”萤火虫“滤镜消除路径追踪算法中常见的坏像素。
R20中的ProRender是产品可视化和其他类型渲染的绝佳选择,但当然这只是管中窥豹,ProRender最终将提供更多功能,并更深入地集成在将来的Cinema4D版本中。
PBR工作流程新PBR材质和灯光选项包含了基于物理渲染工作流的理想默认值。
紧跟现今趋势,为YouTube、Facebook、Oculus或Vive渲染立体360°VR视频。
新媒体核心所有的格式都会在新媒体核心中导入和渲染使用GIFs和MP4s作为纹理直接渲染为MP4、DDS和增强OpenEXR。
2024/7/15 22:43:35 348.3MB 三维建模渲染工具
1
opt、FIFO、LRU/LFU、简单clock、改进型clock等算法实现页面置换
2024/6/10 16:44:21 13KB 页面置换
1
共 95 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡