用于函数逼近的rbf的matlab代码,有结果图和实验报告,可运行
2025/3/30 1:32:25 753KB rbf matlab
1
本改进的LZW是基于普通的LZW实现的,具有更简洁且高效的字典设计,是利用matlab验证的具体实现
2025/3/29 13:42:40 2KB 改进LZW
1
DeepLearningToolbox™提供了一个框架,用于设计和实现具有算法,预训练模型和应用程序的深度神经网络。
您可以使用卷积神经网络(ConvNets,CNN)和长期短期记忆(LSTM)网络对图像,时间序列和文本数据进行分类和回归。
应用程序和图表可帮助您可视化激活,编辑网络体系结构以及监控培训进度。
对于小型训练集,您可以使用预训练的深层网络模型(包括SqueezeNet,Inception-v3,ResNet-101,GoogLeNet和VGG-19)以及从TensorFlow™-Keras和Caffe导入的模型执行传输学习。
了解深度学习工具箱的基础知识深度学习图像从头开始训练卷积神经网络或使用预训练网络快速学习新任务使用时间序列,序列和文本进行深度学习为时间序列分类,回归和预测任务创建和训练网络深度学习调整和可视化绘制培训进度,评估准确性,进行预测,调整培训选项以及可视化网络学习的功能并行和云中的深度学习通过本地或云中的多个GPU扩展深度学习,并以交互方式或批量作业培训多个网络深度学习应用通过计算机视觉,图像处理,自动驾驶,信号和音频扩展深度学习工作流程深度学习导入,导出和自定义导入和导出网络,定义自定义深度学习图层以及自定义数据存储深度学习代码生成生成MATLAB代码或CUDA®和C++代码和部署深学习网络函数逼近和聚类使用浅层神经网络执行回归,分类和聚类时间序列和控制系统基于浅网络的模型非线性动态系统;使用顺序数据进行预测。
2025/3/29 11:02:30 14.06MB deep l matlab 深度学习
1
vs2013+opencv2.4.9亲测可用,运动目标检测效果良好,备注详细
2025/3/29 4:19:13 5KB vibe算法
1
基于VC++用递归的思想,按照经典的分形理论中的Koch曲线编写的算法,是很不错的分形程序设计的入门资料。
2025/3/29 2:47:20 1.84MB fractal Koch 递归
1
这是一种图像视觉显著性提取方法,对应文献S.Goferman,L.Zelnik-Manor,andA.Tal,“Context-awaresaliencydetection,”inIEEECVPR,2010,pp.2376–2383.该文献中的模型同时考虑了图像的局部特征和全局特征,克服了显著区域范围是固定模型以及区域只考虑到前景图像,忽视含有信息量的背景信息的做法,能提取出显著区域轮廓,利于后续处理,但是需要计算图像中每个像素点相当于局部区域的显著性,计算量较大。
2025/3/29 0:47:36 496KB CA算法 Matlab 显著性检测
1
通过CB、CF算法实现召回,LR逻辑回归算法实现精排序,pythonWeb实现的web页面
129.84MB CB CF LR 逻辑回归
1
这是一个在MATLAB上面可以运行的极限学习机算法实例,文件中,包含了多个极限学习机样例,ELM说白了就是另一种神经网络,其作用相似,效果又不同,比如其离散型更强等,建议直接修改接口,方便调试
2025/3/28 16:16:10 1.21MB matlab 极限学习机
1
这个系统是银行账户管理系统的缩影,很有参考价值,对学习和领悟vc6.0还有比较经典的算法有很大帮助!
1
中南大学信息院C++课程设计报告,自己大一时候写的。
有算法流程图和源码。
2025/3/28 9:27:04 522KB C++ 课程设计报告
1
共 1000 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡