徐士良C常用算法程序集第三版高清电子书+源代码,经典之作,算法必备参考资料第1章多项式的计算1.1一维多项式求值1.2一维多项式多组求值1.3二维多项式求值1.4复系数多项式求值1.5多项式相乘1.6复系数多项式相乘1.7多项式相除1.8复系数多项式相除第2章复数运算2.1复数乘法2.2负数除法2.3复数乘幂2.4复数的n次方根2.5复数指数2.6复数对数2.7复数正弦2.8复数余弦第3章随机数的产生3.1产生0到1之间均匀分布的一个随机数3.2产生0到1之间均匀分布的随机数序列3.3产生任意区间内均匀分布的一个随机整数3.4产生任意区间内均匀分布的随机整数序列3.5产生任意均值与方差的正态分布的一个随机数3.6产生任意均值与方差的正态分布的随机数序列第4章矩阵运算4.1实矩阵相乘4.2复矩阵相乘4.3一般实矩阵求逆4.4一般复矩阵求逆4.5对称正定矩阵的求逆4.6托伯利兹矩阵求逆的特兰持方法4.7求一般行列式的值4.8求矩阵的值4.9对称正定矩阵的乔里斯基分解与列式求值4.10矩阵的三角分解4.11一般实矩阵的QR分解4.12一般实矩阵的奇异值分解4.13求广义逆的奇异值分解法第5章矩阵特征值与特征向量的计算5.1约化对称矩阵为对称三对角阵的豪斯荷尔德变换法5.2求对称三对角阵的全部特征值与特征向量5.3约化一般实矩阵为赫申伯格矩阵的初等相似变换法5.4求赫身伯格矩阵全部特征的QR方法5.5求实对称矩阵特征值与特征向量的雅可比法5.6求实对称矩阵特征值与特征向量的雅可比过关法第6章线性代数方程组的求解6.1求解实系数方程组的全选主元高斯消去法6.2求解实系数方程组的全选主元高斯-约当消去法6.3求解复系数方程组的全选主元高斯消去法6.4求解复系数方程组的全选主元高斯-约当消去法6.5求解三对角线方程组的追赶法6.6求解一般带型方程组6.7求解对称方程组的分解法6.8求解对称正定方程组的平方根法6.9求解大型系数方程组6.10求解托伯利兹方程组的列文逊方法6.11高斯-塞德尔失代法6.12求解对称正定方程组的共岿梯度法6.13求解线性最小二乘文体的豪斯伯尔德变换法6.14求解线性最小二乘问题的广义逆法6.15求解病态方程组第7章非线性方程与方程组的求解7.1求非线性方程一个实根的对分法7.2求非线性方程一个实根的牛顿法7.3求非线性方程一个实根的埃特金矢代法7.4求非线性方程一个实根的连分法7.5求实系数代数方程全部的QR方法7.6求实系数方程全部的牛顿下山法7.7求复系数方程的全部根牛顿下山法7.8求非线性方程组一组实根的梯度法7.9求非线性方程组一组实根的拟牛顿法7.10求非线性方程组最小二乘解的广义逆法7.11求非线性方程一个实根的蒙特卡洛法7.12求实函数或复函数方程一个复根的蒙特卡洛法7.13求非线性方程组一组实根的蒙特卡洛法第8章插值与逼近8.1一元全区间插值8.2一元三点插值8.3连分式插值8.4埃尔米特插值8.5特金逐步插值8.6光滑插值8.7第一种边界条件的三次样条函数插值8.8第二种边界条件的三次样条函数插值8.9第三种边界条件的三次样条函数插值8.10二元三点插值8.11二元全区间插值8.12最小二乘曲线拟合8.13切比雪夫曲线拟合8.14最佳一致逼近的里米兹方法8.15矩形域的最小二乘曲线拟合第9章数值积分9.1变补长梯形求积法9.2变步长辛卜生求积法9.3自适应梯形求积法9.4龙贝格求积法9.5计算一维积分的连分式法9.6高振荡函数求积法9.7勒让德-高斯求积法9.8拉盖尔-高斯求积法9.9埃尔米特-高斯求积法9.10切比雪夫求积法9.11计算一维积分的蒙特卡洛法9.12变步长辛卜生二重积分方法9.13计算多重积分的高斯方法9.14计算二重积分的连分方式9.15计算多重积分的蒙特卡洛法第10章常微分方程组的求解10.1全区间积分的定步长欧拉方法10.2积分一步的变步长欧拉方法10.3全区间积分维梯方法10.4全区间积分的定步长龙格-库塔方法10.5积分一步的变步长龙格-库塔方法10.6积分一步的变步长基尔方法10.7全区间积分的变步长默森方法10.8积分一步的连分方式10.9全区间积分的双边法10.10全区间积分的阿当姆斯预
2023/12/25 19:29:22 6.3MB C语言 算法 程序集
1
opencv-2.4.13。
2023/9/26 14:15:39 266.73MB opencv
1
如题,opencv2.4.13,适用于ubuntu系统。
如有问题请及时反馈,谢谢!
2023/8/26 20:21:15 108B opencv2.4.13
1
xmos最新公版驱动v4.13无嘟音。
2023/5/9 4:14:13 2.07MB xmos
1
ReactOS名目自动于为巨匠开拓一个免费并且残缺兼容MicrosoftWindowsXP的操作体系。
ReactOS旨在经由使用相似构架以及提供残缺人民接口实现与NT以及XP操作体系二进制下的使用法度圭表标准以及驱动配置配备枚举的残缺兼容。
https://sourceforge.net/projects/reactos/files/ReactOS/0.4.13/ReactOS-0.4.13-release-14-g2494cfc-iso.zip/download
2023/4/18 4:01:29 120.99MB reactos os xp foss
1
etcd-v3.4.13-linux-amd64.tar.gz
2023/3/9 20:14:12 16.57MB etcd
1
opencv2.4.13convert_cascade.exe
2023/2/14 15:27:31 8KB OpenCV Haar cascade
1
《模式识别(第四版)》是2010年电子工业出版社出版的图书,作者是西奥多里蒂斯。
本书由模式识别领域的两位顶级专家合著,全面阐述了模式识别的基础理论、最新方法、以及各种应用。
作 者:(希)SergiosTheodoridis/(希)KonstantinosKoutroumbas,李晶皎等译第1章导论1.1模式识别的重要性1.2特征、特征向量和分类器1.3有监督、无监督和半监督学习1.4MATLAB程序1.5本书的内容安排第2章基于贝叶斯决策理论的分类器2.1引言2.2贝叶斯决策理论2.3判别函数和决策面2.4正态分布的贝叶斯分类2.5未知概率密度函数的估计2.6最近邻规则2.7贝叶斯网络习题MATLAB编程和练习参考文献第3章线性分类器3.1引言3.2线性判别函数和决策超平面3.3感知器算法3.4最小二乘法3.5均方估计的回顾3.6逻辑识别3.7支持向量机习题MATLAB编程和练习参考文献第4章非线性分类器4.1引言4.2异或问题4.3两层感知器4.4三层感知器4.5基于训练集准确分类的算法4.6反向传播算法4.7反向传播算法的改进4.8代价函数选择4.9神经网络大小的选择4.10仿真实例4.11具有权值共享的网络4.12线性分类器的推广4.13线性二分法中1维空间的容量4.14多项式分类器4.15径向基函数网络4.16通用逼近4.17概率神经元网络4.18支持向量机:非线性格况4.19超越SVM的范例4.20决策树4.21合并分类器4.22合并分类器的增强法4.23类的不平衡问题4.24讨论习题MATLAB编程和练习参考文献第5章特征选择5.1引言5.2预处理5.3峰值现象5.4基于统计假设检验的特征选择5.5接收机操作特性(ROC)曲线5.6类可分性测量5.7特征子集的选择5.8最优特征生成5.9神经网络和特征生成/选择5.10推广理论的提示5.11贝叶斯信息准则习题MATLAB编程和练习参考文献第6章特征生成I:线性变换6.1引言6.2基本向量和图像6.3Karhunen-Loève变换6.4奇异值分解6.5独立成分分析6.6非负矩阵因子分解6.7非线性维数降低6.8离散傅里叶变换(DFT)6.9离散正弦和余弦变换6.10Hadamard变换6.11Haar变换6.12回顾Haar展开式6.13离散时间小波变换(DTWT)6.14多分辨解释6.15小波包6.16二维推广简介6.17应用习题MATLAB编程和练习参考文献第7章特征生成II7.1引言7.2区域特征7.3字符形状和大小的特征7.4分形概述7.5语音和声音分类的典型特征习题MATLAB编程和练习参考文献第8章模板匹配8.1引言8.2基于最优路径搜索技术的测度8.3基于相关的测度8.4可变形的模板模型8.5基于内容的信息检索:相关反馈习题MATLAB编程和练习参考文献第9章上下文相关分类9.1引言9.2贝叶斯分类器9.3马尔可夫链模型9.4Viterbi算法9.5信道均衡9.6隐马尔可夫模型9.7状态驻留的HMM9.8用神经网络训练马尔可夫模型9.9马尔可夫随机场的讨论习题MATLAB编程和练习参考文献第10章监督学习:尾声10.1引言10.2误差计算方法10.3探讨有限数据集的大小10.4医学图像实例研究10.5半监督学习习题参考文献第11章聚类:基本概念11.1引言11.2近邻测度习题参考文献第12章聚类算法I:顺序算法12.1引言12.2聚类算法的种类12.3顺序聚类算法12.4BSAS的改进12.5两个阈值的顺序方法12.6改进阶段12.7神经网络的实现习题MATLAB编程和练习参考文献第13章聚类算法II:层次算法13.1引言13.2合并算法13.3cophenetic矩阵13.4分裂算法13.5用于大数据集的层次算法13.6最佳聚类数的选择习题MATLAB编程和练习参考文献第14章聚类算法III:基于函数最优方法14.1引言14.2混合分解方法14.3模糊聚类算法14.4可能性聚类14.5硬聚类算法14.6向量量化附录习题MATLAB编程和练习参考文献第15
2016/1/18 19:48:46 95.69MB 模式识别
1
《模式识别(第四版)》是2010年电子工业出版社出版的图书,作者是西奥多里蒂斯。
本书由模式识别领域的两位顶级专家合著,全面阐述了模式识别的基础理论、最新方法、以及各种应用。
作 者:(希)SergiosTheodoridis/(希)KonstantinosKoutroumbas,李晶皎等译第1章导论1.1模式识别的重要性1.2特征、特征向量和分类器1.3有监督、无监督和半监督学习1.4MATLAB程序1.5本书的内容安排第2章基于贝叶斯决策理论的分类器2.1引言2.2贝叶斯决策理论2.3判别函数和决策面2.4正态分布的贝叶斯分类2.5未知概率密度函数的估计2.6最近邻规则2.7贝叶斯网络习题MATLAB编程和练习参考文献第3章线性分类器3.1引言3.2线性判别函数和决策超平面3.3感知器算法3.4最小二乘法3.5均方估计的回顾3.6逻辑识别3.7支持向量机习题MATLAB编程和练习参考文献第4章非线性分类器4.1引言4.2异或问题4.3两层感知器4.4三层感知器4.5基于训练集准确分类的算法4.6反向传播算法4.7反向传播算法的改进4.8代价函数选择4.9神经网络大小的选择4.10仿真实例4.11具有权值共享的网络4.12线性分类器的推广4.13线性二分法中1维空间的容量4.14多项式分类器4.15径向基函数网络4.16通用逼近4.17概率神经元网络4.18支持向量机:非线性格况4.19超越SVM的范例4.20决策树4.21合并分类器4.22合并分类器的增强法4.23类的不平衡问题4.24讨论习题MATLAB编程和练习参考文献第5章特征选择5.1引言5.2预处理5.3峰值现象5.4基于统计假设检验的特征选择5.5接收机操作特性(ROC)曲线5.6类可分性测量5.7特征子集的选择5.8最优特征生成5.9神经网络和特征生成/选择5.10推广理论的提示5.11贝叶斯信息准则习题MATLAB编程和练习参考文献第6章特征生成I:线性变换6.1引言6.2基本向量和图像6.3Karhunen-Loève变换6.4奇异值分解6.5独立成分分析6.6非负矩阵因子分解6.7非线性维数降低6.8离散傅里叶变换(DFT)6.9离散正弦和余弦变换6.10Hadamard变换6.11Haar变换6.12回顾Haar展开式6.13离散时间小波变换(DTWT)6.14多分辨解释6.15小波包6.16二维推广简介6.17应用习题MATLAB编程和练习参考文献第7章特征生成II7.1引言7.2区域特征7.3字符形状和大小的特征7.4分形概述7.5语音和声音分类的典型特征习题MATLAB编程和练习参考文献第8章模板匹配8.1引言8.2基于最优路径搜索技术的测度8.3基于相关的测度8.4可变形的模板模型8.5基于内容的信息检索:相关反馈习题MATLAB编程和练习参考文献第9章上下文相关分类9.1引言9.2贝叶斯分类器9.3马尔可夫链模型9.4Viterbi算法9.5信道均衡9.6隐马尔可夫模型9.7状态驻留的HMM9.8用神经网络训练马尔可夫模型9.9马尔可夫随机场的讨论习题MATLAB编程和练习参考文献第10章监督学习:尾声10.1引言10.2误差计算方法10.3探讨有限数据集的大小10.4医学图像实例研究10.5半监督学习习题参考文献第11章聚类:基本概念11.1引言11.2近邻测度习题参考文献第12章聚类算法I:顺序算法12.1引言12.2聚类算法的种类12.3顺序聚类算法12.4BSAS的改进12.5两个阈值的顺序方法12.6改进阶段12.7神经网络的实现习题MATLAB编程和练习参考文献第13章聚类算法II:层次算法13.1引言13.2合并算法13.3cophenetic矩阵13.4分裂算法13.5用于大数据集的层次算法13.6最佳聚类数的选择习题MATLAB编程和练习参考文献第14章聚类算法III:基于函数最优方法14.1引言14.2混合分解方法14.3模糊聚类算法14.4可能性聚类14.5硬聚类算法14.6向量量化附录习题MATLAB编程和练习参考文献第15
2016/1/18 19:48:46 95.69MB 模式识别
1
comsol3.5太大:4.13G。
传不上来。
我曾经用上传的LICENSE文件,成功地安装和使用comsol3.5。
2017/8/23 23:45:22 3KB 多重物理耦合软体,有限元
1
共 23 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡