随着脉冲激光焊接技术在精密制造领域的应用越来越广泛,研究脉冲激光精密焊接过程中的焊接变形规律,对于提高焊接质量具有重要意义。
采用ANSYS的壳单元建立三维有限元模型,模拟厚度为0.5mmHastelloyC-276超薄板的脉冲激光焊接过程。
通过实验测量焊接变形的分布情况,获得的实验结果与模拟结果一致,验证了有限元模型的合理性。
利用建立的模型,进一步研究激光单脉冲能量输入对横向收缩变形和失稳变形分布规律的影响。
结果表明,激光的脉冲作用引起瞬时变形周期性振荡;
随着激光单脉冲能量输入的增加,焊接件的横向收缩变形和失稳变形变大。
1
设计一个请求页式存储管理方案。
并编写模拟程序实现之。
要求包含:1.过随机数产生一个指令序列,共320条指令。
其地址按下述原则生成:①50%的指令是顺序执行的;
②25%的指令是均匀分布在前地址部分;
③25%的指令是均匀分布在后地址部分;
#具体的实施方法是:在[0,319]的指令地址之间随机选区一起点M;顺序执行一条指令,即执行地址为M+1的指令;
在前地址[0,M+1]中随机选取一条指令并执行,该指令的地址为M’;顺序执行一条指令,其地址为M’+1;
在后地址[M’+2,319]中随机选取一条指令并执行;
重复A—E,直到执行320次指令。
2.指令序列变换成页地址流设:(1)页面大小为1K;
用户内存容量为4页到32页;
用户虚存容量为32K。
在用户虚存中,按每K存放10条指令排列虚存地址,即320条指令在虚存中的存放方式为:第0条—第9条指令为第0页(对应虚存地址为[0,9]);
第10条—第19条指令为第1页(对应虚存地址为[10,19]);





















第310条—第319条指令为第31页(对应虚存地址为[310,319]);
按以上方式,用户指令可组成32页。
3.计算并输出下述各种算法在不同内存容量下的命中率。
FIFO先进先出的算法LRU最近最少使用算法OPT最佳淘汰算法
2025/5/25 19:16:15 44KB fifo lru opt
1
Tomcat864位Tomcat864位Tomcat864位Tomcat864位
2025/5/22 8:44:15 10.6MB Tomcat8 64位
1
SPFD5408A_V0.5_20070626.pdf
2025/5/2 12:02:05 3.65MB tftp
1
输出功率P0=0.5W工作频率f0=7MHz调幅度ma=100%电源电压12v频率准确度△f/f0≤5×10-4;
画出调幅发射机组成框图,方案的确定,晶体振荡器设计计算
2025/4/21 13:24:42 230KB 调幅 发射机
1
递推极大似然参数辨识法MATLAB程序clearall%清理工作间变量closeall%关闭所有图形clc%清屏%%%%M序列、噪声信号产生%%%%L=1200;%四位移位积存器产生的M序列的周期y1=1;y2=1;y3=1;y4=0;%四个移位积存器的输出初始值fori=1:L;x1=xor(y3,y4);%第一个移位积存器的输入信号x2=y1;%第二个移位积存器的输入信号x3=y2;%第三个移位积存器的输入信号x4=y3;%第四个移位积存器的输入信号y(i)=y4;%第四个移位积存器的输出信号,幅值"0"和"1"ify(i)>0.5,u(i)=-1;%M序列的值为"1"时,辨识的输入信号取“-1”elseu(i)=1;%M序列的值为"0"时,辨识的输入信号取“1”endy1=x1;y2=x2;y3=x3;y4=x4;%为下一次的输入信号作准备end------
2025/4/16 16:21:31 2KB 极大似然法
1
FFC柔性扁平电缆FlexibleFlatCable(FFC)是一种用PET绝缘材料和极薄的镀锡扁平铜线,通过高科技自动化设备生产线压合而成的新型数据线缆,具有柔软、随意弯曲折叠、厚度薄、体积小、连接简单、拆卸方便、易解决电磁屏蔽(EMI)等优点柔性扁平电缆FlexibleFlatCable(FFC)可以任意选择导线数目及间距,使联线更方便,大大减少电子产品的体积,减少生产成本,提高生产效率,最适合于移动部件与主板之间、PCB板对PCB板之间、小型化电器设备中作数据传输线缆之用。
普通的规格有0.5mm、0.8mm、1.0mm、1.25mm、1.27mm、1.5mm、2.0mm、2.54mm等各种间距柔性电缆线。
2025/4/3 22:30:53 409KB AD15 PCB封装库 FPC-FFC 最全封装库
1
适合易语言新手哦,
1
报道了基于半导体纳秒调制技术的百瓦级、线性偏振掺铥光纤激光器。
该激光器采用调制半导体激光器作为种子源,脉冲宽度为20ns,重复频率在200kHz~1MHz范围内连续可调。
当重复频率为200kHz时,经主功率振荡放大器(MOPA)得到100W平均功率输出。
最高输出功率时,由于存在增益整形机制,脉冲宽度由20ns降低为6ns。
相应的峰值功率达到83kW,单脉冲能量为0.5mJ,最高输出功率下系统输出偏振消光比达到17dB。
据本文所知,这是首次报道基于半导体调制技术的百瓦级、纳秒脉宽、线偏振的掺铥光纤激光器。
2025/2/23 22:27:44 1.74MB 激光器 光纤激光 半导体激 纳秒脉冲
1
[文件数:135][47.6GB][含激活KEY]GBVMwarevSphere5.1/VMwarevCenterServer5.1/VMware-VIMSetup-all-5.1.0-880471.iso2.54GBVMwarevSphere5.0/VMwarevSphereStorageAppliance5.0/VMware-vsa-en-1.0.0.6-458467.iso2.33GBVMwarevSphere5.0/VMwarevCenterServer5.0/VMware-VIMSetup-all-5.0.0-804276.iso2.33GBVMwarevSphere5.1/VMwarevSphereDataProtection5.1/vSphereDataProtection_-_1.0TB.ova2.31GBVMwarevSphere5.1/VMwarevSphereDataProtection5.1/vSphereDataProtection_-_0.5TB.ova2.29GBVMwarevSphere5.1/VMwarevSphereDataProtection5.1/vSphereDataProtection_-_2.0TB.ova
2025/2/23 13:50:35 123KB VMware vSphere exsi
1
共 215 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡