高平电子线路答案难找,这个资源含有第五章的答案,很好哦~
2025/8/12 9:22:14 3.04MB 高频 ,答案
1
file=open("考研英语真题.txt",'r',encoding='UTF-8')只要把文件放在同一目录下,在上面这一行中改一下文件名就行。
考研时候感觉辅导书上的高频词汇有点问题,就写了这么个程序^_^
2025/8/9 15:29:46 401KB Python 文件读取 正则表达式
1
包含高频电子线路习题答案(第五版)张肃文的答案,还有课程的PPT,以及一些相关的资料
2025/7/9 2:47:52 35.59MB 高频电子线路 PPT 课程答案
1
哈工大高频课程设计,接收发射调幅装置,1中波发射机系统 发射机包括三个部分:高频部分,低频部分和电源部分。
高频部分一般包括主振荡器、缓冲放大、中间放大、功放推动级与末级功放。
主振器的作用是产生频率稳定的载波。
为了提高频率稳定性,主振级可以采用西勒电路,并在它后面加上缓冲级,以削弱后级对主振器的影响。
低频部分包括声电变换、低频电压放大级、低频功率放大级与末级低频功率放大级。
低频信号通过逐渐放大,在末级功放处获得所需的功率电平,以便对高频末级功率放大器进行调制。
电源部分需要采用稳压电源,以减少对系统稳定性的影响。
2025/6/27 19:54:18 1.49MB 高频发射接收
1

高频电子技术:第四章 振幅调制、解调与混频电路.ppt
2025/6/20 2:46:49 4.39MB
1

【蓝桥杯省赛无忧班与冲刺班笔记详解】蓝桥杯是一项国内知名的软件和信息技术专业人才的竞赛,旨在培养和选拔优秀的编程及算法能力。
该赛事覆盖了大学本科、研究生以及初高中等多个层次,为广大学子提供了一个展示技能、提升自我的平台。
省赛是蓝桥杯比赛体系中的一个重要环节,对参赛者的技术水平有较高要求。
无忧班和冲刺班是针对这一比赛特别开设的培训课程,旨在帮助参赛者更好地准备和应对省赛。
无忧班通常在赛前较早时间开始,其目标是全面系统地教授基础理论知识和实战技巧。
课程内容可能包括但不限于:1. **基础算法**:如排序、搜索、图论、动态规划等经典算法的讲解和练习,使学员掌握解决复杂问题的基本思路。
2. **数据结构**:链表、栈、队列、树、图等数据结构的实现和应用,强调如何高效存储和处理数据。
3. **编程语言**:C++、Java等常见编程语言的基础语法和高级特性,以及如何利用它们实现高效的算法。
4. **模拟题目**:通过对历年真题和模拟题目的解析,让学员熟悉比赛题型和解题策略。
5. **实战训练**:提供在线平台进行编程实战,提高解题速度和正确率。
6. **团队协作**:训练团队合作能力,模拟团队竞赛场景,培养团队沟通和分工协作的能力。
冲刺班则是在比赛临近时进行,注重查漏补缺和提升应试技巧。
课程可能涵盖:1. **高频题型解析**:针对历年比赛中出现频率较高的题目类型进行深入解析,帮助学员快速掌握解题技巧。
2. **难题突破**:针对复杂的算法问题,进行深入讲解和实例演示,提高学员解决难题的能力。
3. **时间管理**:教授比赛中的时间管理策略,如何在有限的时间内完成更多的题目。
4. **心理调适**:帮助学员调整心态,减少比赛压力,增强比赛中的临场应对能力。
5. **模拟考试**:组织全真模拟考试,模拟真实比赛环境,提升学员的适应能力。
通过无忧班和冲刺班的学习,参赛者不仅能够掌握扎实的算法基础和编程技能,还能提高分析问题、解决问题的能力,为参加蓝桥杯省赛做好充分的准备。
在实际学习过程中,建议学员结合课程内容,自主刷题,积极参与讨论,以期在比赛中取得优异的成绩。
同时,对于压缩包中的“蓝桥杯 - 副本”文件,可能是包含往期课程资料、讲义或习题集,可作为复习和自我测试的重要参考资料。
认真研读和实践这些资料,将对提升编程技能和比赛表现大有裨益。
2025/6/20 2:46:10 394.79MB
1
高频电子线路期末考试,试题题库,绝对经典,知识点覆盖齐全。
2025/6/18 4:38:33 1.5MB 高频电子线路
1
在计算机视觉领域,图像配准是一项关键任务,它涉及到将多张图像对齐,以便进行比较、融合或分析。
OpenCV(开源计算机视觉库)提供了一系列工具和算法来执行这项工作,其中包括相位相关法。
本文将深入探讨如何利用OpenCV实现相位相关图像配准,并详细介绍相关知识点。
相位相关是一种非像素级对齐技术,它通过计算两个图像的频域相位差异来确定它们之间的位移。
这种方法基于傅里叶变换理论,傅里叶变换可以将图像从空间域转换到频率域,其中图像的高频成分对应于图像的边缘和细节,低频成分则对应于图像的整体结构。
我们需要理解OpenCV中的傅里叶变换过程。
在OpenCV中,可以使用`cv::dft`函数对图像进行离散傅里叶变换。
这个函数将输入的图像转换为频率域表示,结果是一个复数矩阵,包含了图像的所有频率成分。
然后,为了进行相位相关,我们需要计算两个图像的互相关。
这可以通过将一个图像的傅里叶变换与另一个图像的共轭傅里叶变换相乘,然后进行逆傅里叶变换得到。
在OpenCV中,可以使用`cv::mulSpectrums`函数来完成这个步骤,它实现了复数乘法,并且可以指定是否进行对位相加,这是计算互相关的必要条件。
接下来,我们获得的互相关图在中心位置有一个峰值,该峰值的位置对应于两幅图像的最佳位移。
通过找到这个峰值,我们可以确定图像的位移量。
通常,这可以通过寻找最大值或最小二乘解来实现。
OpenCV提供了`cv::minMaxLoc`函数,可以帮助找到这个峰值。
在实际应用中,可能会遇到噪声和图像不完全匹配的情况。
为了提高配准的准确性,可以采用滤波器(如高斯滤波器)预处理图像,降低噪声影响。
此外,还可以通过迭代或金字塔方法逐步细化位移估计,以实现亚像素级别的精度。
在实现过程中,需要注意以下几点:1.图像尺寸:为了进行傅里叶变换,通常需要将图像尺寸调整为2的幂,OpenCV的`cv::getOptimalDFTSize`函数可以帮助完成这一操作。
2.零填充:如果图像尺寸不是2的幂,OpenCV会在边缘添加零,以确保傅里叶变换的效率。
3.归一化:为了使相位相关结果更具可比性,通常需要对傅里叶变换结果进行归一化。
一旦得到配准参数,可以使用`cv::warpAffine`或`cv::remap`函数将一幅图像变换到另一幅图像的空间中,实现精确对齐。
总结来说,OpenCV提供的相位相关方法是图像配准的一种高效工具,尤其适用于寻找微小的位移。
通过理解和运用上述步骤,开发者可以在自己的项目中实现高质量的图像配准功能。
2025/6/17 6:37:22 204KB OpenCV 相位相关 图像配准
1
最近接触了很多产品经理,很多PM都说,作为创业团队的产品,必须要懂运营:不运营,甚至不能确定产品在正确的方向,在做正确的投入。
那么我就来根据我们之间的谈话,说说我用产品经理的角度对运营的理解:目标用户在哪里?(用户画像)多少次的曝光能引发一次新用户的使用?(转化漏斗模型)曝光-使用过程中,有什么障碍需要克服?(如何优化转化率)什么会引发产品卸载?如何克服?(用户流失模型)如何可以提高使用频率?(让用户需求成为高频)当别人问起的时候,会推荐产品。
(口碑传播)用得太爽了,见人就主动安利。
(使命感)其实一开始没有分什么产品经理产品运营的。
有一句老话,“闭门造车,出门合辙”,大家现在对产品和运营的区隔
1
设计步骤:1、语音信号的采集利用Windows下的录音机录制一段自己的话音,或采用其它软件截取一段音乐信号,然后在Matlab软件平台下,利用函数wavread对语音信号进行采样,记住采样频率和采样点数。
2、语音信号的频谱分析在Matlab中,可以利用函数FFT对信号进行快速傅立叶变换,得到信号的频谱特性,要求学生首先画出语音信号的时域波形,然后对语音信号进行频谱分析。
3、对语音信号分别加入正弦噪声和高斯白噪声,使信噪比为(学号)dB,画出加噪信号的时域波形和频谱图;
关于噪声信号,噪声类型分为如下几种:(1)白噪声;
(2)单频噪声(正弦干扰);
(3)多频噪声(多正弦干扰);
(4)其他干扰,如低频、高频、带限噪声,或chirp干扰、充激干扰。
4、设计数字滤波器,并画出其频率响应。
对叠加噪声前后的信号进行频谱分析,确定降噪的滤波器指标;
或者根据如下给定的滤波器性能指标:(1)低通滤波器的性能指标:=1000Hz,=1200Hz,=1dB,=100dB;
(2)高通滤波器的性能指标:=4800Hz,=5000Hz,=100dB,=1dB.(3)带通滤波器的性能指标:=1200Hz,=3000Hz,=1000Hz,=3200Hz,=100dB,=1dB。
采用窗函数法设计上面要求的3种滤波器,并画出滤波器的频率响应;
5、用滤波器对信号进行滤波用自己设计的滤波器对加噪信号进行滤波,画出滤波后信号的时域波形及频谱,并对滤波前后的信号进行对比,分析信号的变化;
6、回放语音信号,分析滤波前后的语音变化,验证滤波效果
2025/6/14 3:33:47 25KB MATLAB 数字信号 语音信号 窗函数法
1
共 274 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡