该压缩包在matlab2013a中运行并实现图像的特征提取,包含四大类经典特征提取方法:SIFT特征,颜色特征,形状特征,纹理特征。
每个方法文件夹内附有文档说明。
最后我给出了同步PPT解说,包含原理,步骤,及运行实例和结果。
2023/10/6 20:41:40 2.57MB 特征提取
1
程序包含了三种颜色特征的提取:颜色直方图、颜色矩、颜色聚合向量
2023/9/22 16:33:21 3KB 颜色特征提取
1
基于颜色特征、基于形状特征或者基于颜色和形状综合特征。
2023/8/14 17:57:33 29.24MB 基于颜色特征
1
用matlab提取图像的颜色特征边界特征
2023/8/6 13:13:46 28KB 图像特征提取
1
对于通用的静止图像检索,用于检索的特征主要有颜色、纹理、形状等,其中颜色、纹理、形状应用尤为普遍;
对于目标图像和检索图像进行颜色空间转换、亮度图像的边缘提取和二值分割、提取目标区域的颜色特征。
颜色内容包含两个一般的概念,一个对应于全局颜色分布,一个对应于局部颜色信息。
毕设主要按照全局颜色分布来索引图像可以通过计算每种颜色的像素的个数并构造颜色灰度直方图来实现,这对检索具有相似的总体颜色内容的图像将是一个更好的途径。
2023/8/4 6:01:44 55.54MB 图像检索 程序源码
1
《基于内容图像检索技术》从理论方法研究与实现技术角度,总结归纳了基于内容图像检索(CBIR)技术的研究与进展,并融入了作者多年来的相关研究与应用成果,系统地介绍了CBIR的主要概念、基本原理、典型方法、实用范例以及新动向。
《基于内容图像检索技术》共有12章分为五部分:第一部分是概述,分析了CBIR的体系结构、技术现状和发展趋势;
第一部分讨论图像特征提取,给出图像低层特征(颜色、形状、纹理、空间关系)和图像高层特征(语义)提取算法,论述了综合图像多特征的检索方法以及三维模型检索的前沿研究;
第三部分是优化,论述了特征优化与过程优化;
第四部分给出了相关性评价与量化评价的通用方法;
第五部分介绍原型系统与应用实例,介绍了作者设计实现的原型检索系统与应用实例。
  《基于内容图像检索技术》注重理论分析与算法实践相结合。
体系完善,书中所列算法均已调试通过,配有适量习题,每章均附有参考文献与小结,便于参考查阅。
《基于内容图像检索技术》内容详实。
比较实用,可供电子工程、计算机科学与技术、媒体制作和生产、远程教育和医疗、公安、遥感等领域的科技工作者参考,亦可作为高校电子工程、计算机及相关专业研究生教材。
第1章基于内容图像检索技术概述  第2章基于颜色特征的图像检索  第3章基于形状特征的图像检索  第4章基于纹理特征的图像检索  第5章基于空间关系的图像检索  第6章基于语义的图像检索  第7章综合多特征的图像检索  第8章三维模型检索  第9章图像检索中的特征优化  第10章图像检索中的相关反馈过程优化  第11章图像检索系统性能评价  第12章基于内容图像检索的原型系统及应用实例
2023/7/27 12:20:42 31.01MB 内容检索 图像检索 检索技术 找图
1
这是北京大学计算机系数字图像处理的实习题目。
在这个项目中,我们收获了很多。
把整个分类、特征提取、论文阅读等等都经历了。
这是我们组三个人共同的结果。
一. 项目综述本实验项目实现了基于内容的图像分类系统,系统共分为三大模块:特征提取部分和分类器训练与测试,以及界面展示。
在特征提取模块采用了HSV、CIE-LAB、RGB颜色特征,小波变换及灰度共生矩阵的纹理特征,基于canny算子不变矩的形状特征;
分类器我们选择了SVM、?对于不同特征的处理,我们采取了前期加权融合。
最后还有一个对各个特征分类结果的投票决策系统,但投票系统还没有用于最后结果的提交。
界面展示使用VisualC++6.0平台。
如果遇到任何问题,或者想转载,可以到我的主页留言:http://blog.sina.com.cn/gusui,或者直接给我来邮件:ouyangj0@gmail.com谢谢:)
1
可用来提取图像的颜色特征、纹理特征(GaborFilter)以及外形特征,并在此基础上判断图像相关性。
2018/9/23 21:43:13 43KB Java 图像检索
1
基于内容的图像检索(mysql数据库+navicat+matlab实现)100%可运行,有界面需要本人调整数据库路径位置和自行配置matlab连接mysql数据库。
比较简单,只有颜色特征和纹理特征的提取(颜色矩+lbp),从预先设定好的100张图片中检索,大二做的,带有报告。
2018/7/6 11:27:45 11.61MB matlab mysql 图像检索 可运行
1
近年来卷积神经网络框架被成功地应用到目标跟踪领域,并取得了较为稳健的跟踪结果。
基于此思想,提出一种基于定位-分类-匹配模型的目标跟踪方法。
首先,在定位模型中,利用前一帧的位置信息预测当前帧中的候选目标区域。
然后,采用已训练的深度特征对候选区域进行类间筛选,选出N个次优目标区域。
最后,利用常规颜色特征对次优目标区域进行类内寻优匹配,从而确定最终的跟踪目标。
与此同时,分别对定位、分类中的网络进行更新,并对建立的匹配模型进行在线实时更新,使得其对目标的描述愈加准确。
在OTB50和OTB100标准数据库上进行实验测试,结果表明,提出的跟踪方法在快速运动、相似物体干扰、复杂背景等条件下具有较好的跟踪稳健性。
1
共 26 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡