本文件包括随机森林的代码实现和相应的数据集,以及详尽的中文注释,已调试通过。
代码有两份,一份是在网上下载的,另一份是自己整理后编写的。
编程环境为Python2.7。
因为只是用来学习随机森林算法,所以在调参方法没下多少功夫,正确率可能不太高,当然数据集比较小也是一个原因。
感兴味的童鞋可以自己调整参数提高正确率。
2019/7/11 18:35:25 34KB 随机森林 Python
1
从网站爬取口红销售数据,分析影响销售数据的重要因素以及根据销售因素建模预测其销售量。
本文先将数据进行预处理得到实验数据,然后着重分析朴素贝叶斯判别分析算法、AdaBoost算法以及随机森林算法在口红销量预测中的效果,并在随机森林算法中进行模型优化。
通过实验结果表明总评价数、价格和描述分这三个因素对销售量的影响较大,对三个算法对比分析得出随机森林算法预测错误率最低,有较好的预测效果。
2022/9/8 7:04:18 4.29MB 数据挖掘 R语言
1
本文实例讲述了Python实现的随机森林算法。
分享给大家供大家参考,具体如下:随机森林是数据挖掘中非常常用的分类预测算法,以分类或回归的决策树为基分类器。
算法的一些基本要点:*对大小为m的数据集进行样本量同样为m的有放回抽样;
*对K个特征进行随机抽样,构成特征的子集,样本量的确定方法可以有平方根、自然对数等;
*每棵树完全生成,不进行剪枝;
*每个样本的预测结果由每棵树的预测投票生成(回归的时候,即各棵树的叶节点的平均)著名的python机器学习包scikitlearn的文档对此算法有比较详尽的介绍:http://scikit-learn.org/stable/modules/en
2016/7/18 17:32:02 84KB dataframe prediction python
1
010_基于随机森林算法(RF)的数据回归预测Matlab代码完成过程,调用TreeBagger函数完成
1
011_基于随机森林算法(RF)的数据分类预测Matlab代码完成过程,调用TreeBagger函数完成
2016/2/13 10:49:31 72KB 机器学习 深度学习 神经网络 Matlab
1
基于随机森林算法的数据分类预测,代码全部封装好了,正文也写得非常详细,跑数据的过程中有任何问题可以私信博主
2017/9/22 20:41:11 3KB 机器学习
1
012_基于随机森林算法(RF)的时间序列预测Matlab代码完成过程,调用TreeBagger函数完成
1
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡