mo_3.m_lbp特征提取,fitcecoc训练svm模型,predict预测,人脸分类。
使用fitcecoc函数训练一个多分类的SVM模型,使用predict函数利用训练出的模型对测试数据进行预测,将得到的类标预测值与测试数据真实的类标进行比较,计算测试数据中被正确分类的样本所占的比例。
2025/8/4 5:45:50 3KB matlab 人脸分类 fitcecoc predict
1
合肥工业大学的计算机网络,网络工程师综合训练的设计题目,网上图书馆的设计与实现,全部源码及报告及设计好的数据库,直接能用,验收成绩为优秀,请放心下载。
2025/7/31 22:22:54 2.3MB 网上图书馆
1
针对目前混凝土强度预测中存在的不确定性,难以自适应性的确定神经网络隐含层,建立了基于高维云的RBF神经网络的混凝土预测模型。
运用MATLAB8.10进行仿真实验。
实验结果表明该模型综合考虑了影响混凝土强度的各种因素,能够实现预测结果的随机性和模糊性,具有更高的预测精度,更快的训练速度,可以广泛应用于生产现场实地的混凝土强度预测和质量检验。
1
这个利用行人HOG特征通过SVM分类器进行分类的代码。
程序运行环境为VS2013+OpenCV2.20。
程序内可以选择Opencv自带的行人检测算法,也可以自己训练HOG特征进行检测。
如果自己训练的话,需要在D盘建立一个文件(具体文件名程序中有)里面存在训练的正负样本,和测试样本。
具体D盘的这个文件夹在本人自愿中已上传,需要请自行下载。
2025/7/30 21:48:56 6.52MB hog svm 行人检测
1
为了帮助对视觉障碍患者有效识别道路周围的场景,提出一种基于迁移学习和深度神经网络方法,实现实时盲道场景识别。
首先提取盲道障碍物的瓶颈描述子和判别区域集成显著性特征描述子,并进行特征融合,然后训练新的盲道特征表示,用Softmax函数实现盲道场景识别。
实验中,对成都不同区域盲道周围障碍物采样,分别采用基于Mobilenet模型不同参数训练和测试了提出的新模型,最后在实际应用场景,实现了盲道周边障碍物的实时分类和报警,实验证明提出的方法具有很高准确率和良好的运行性能。
2025/7/30 17:30:33 1.22MB 论文研究
1
当今社会中,计算机的使用已经深入到日常工作和生活的方方面面。
Windows系统的推出使电脑从高雅的学术殿堂走入了寻常百姓家,各行各业的人们无须经过特别的训练就能够使用电脑完成许许多多复杂的工作。
对于学生的学籍管理是一个教育单位不可缺少的部分,它的内容对学校的管理者来说至关重要,所以学生学籍管理系统应该能够为用户提供充足的信息和快捷的查询手段。
但一直以来人们使用传统人工的方式管理文件档案,这种管理方式存在着许多缺点,如:效率低、保密性差,另外时间一长,将产生大量的文件和数据,这对于查找、更新和维护都带来了不少的困难。
而使用计算机对学生学籍信息进行管理,具有手工管理所无法比拟的优点,例如:检索迅速、查找方便、存储量大、保密性好等。
这些优点能够极大地提高学生管理的效率,也是学校科学化、正规化管理的重要途径。
1
win10+anaconda3+python3mnist训练代码,解压后后运行src文件夹mniistdemo.py文件
2025/7/21 22:23:47 18.04MB 深度学习
1
COAE2014数据集,用做简单的机器学习情感分析的训练集很不错
2025/7/21 7:02:35 69.12MB 数据集 COAE2014
1
tensorflow版本的resnet代码,以最简化的方式构建。
可以适用于各种网络的结构的变形,另外提供预训练tensorflow版本的预训练权重,由于上传文件限制,下载好代码之后:https://pan.baidu.com/s/1Kuvad3P9gn39vyONL2glZg这里下载各个层数的预训练模型
2025/7/21 5:45:46 619KB tensorflow resnet pre-train
1
使用BP神经网络对样本数据(某水库年降雨量监测数据+中国铁矿石年进口量监测数据)进行操作,生成需要的训练数据和测试数据。
并使用这些数据进行训练处误差小于指定要求的网络,之后可根据界面获取需要预测的年限,并最终进行预测
2025/7/21 4:54:18 6.63MB C# BP神经网络 数据预测 界面
1
共 1000 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡