智能微电网粒子群优化算法,微源:光伏、风机、发电机、储能等
2024/6/9 14:33:27 5KB matlab
1
包含:基本粒子群算法、带压缩因子、线性递减权重、自适应权重、随机权重、同步变化、二阶粒子群、混沌粒子群、基于模拟退火的粒子群算法等
2024/5/31 5:05:23 8KB 粒子群优化
1
粒子群优化算法对BPNN进行超参数优化的python代码实现,亲测可用
2024/5/28 9:32:56 3KB pso bpnn
1
利用粒子群算法对非线性函数极值进行求解寻优的matlab程序代码
2024/5/27 21:07:01 3KB matlab 粒子群
1
本文基于支持向量机(SVM)和改进的粒子群优化(IPSO)算法(SVM-IPSO)创建了双向预测模型,以预测碳纤维的性能和生产参数。
在SVM中,选择对预测性能有重要影响的参数至关重要。
提出了IPSO对它们进行优化的方法,然后将SVM-IPSO模型应用于碳纤维产量的双向预测。
SVM的预测精度主要取决于其参数,因此利用IPSO来寻找SVM的最佳参数,以提高其预测能力。
受小区通信机制的启发,我们通过将全球最佳解决方案的信息纳入搜索策略来提出IPSO,以提高开发效率,并采用IPSO建立双向预测模型:在前向预测的方向上,我们认为富有成效参数作为输入,属性索引作为输出;
在向后预测的方向上,我们将性能指标视为输入,将生产参数视为输出,在这种情况下,该模型成为新型碳纤维的方案设计。
来自一组实验数据的结果表明,该模型的性能优于径向基函数神经网络(RNN),基本粒子群优化(PSO)方法以及遗传算法和改进的粒子群优化(GA-IPSO)方法在大多数实验中都是如此。
换句话说,仿真结果证明了SVM-IPSO模型在处理预测问题方面的有效性和优势。
2024/5/15 2:02:19 536KB support vector machine; particle
1
任务规划是无人机协同作战的关键技术之一。
以压制敌方防空火力任务为背景,考虑战场地形与威胁分布、击毁目标需要的火力以及无人机的战斗毁伤概率等因素,建立了多架无人机协同攻击多个地面目标的任务规划模型,并提出并行遗传粒子群优化算法(GAPSO)求解任务规划问题。
通过具体的仿真算例验证了协同任务规划模型的合理性,并比较分析并行GAPSO算法与标准GAPSO算法,证明了并行GAPSO算法具有更好的收敛性且避免陷入局部最优。
2024/4/21 21:19:52 364KB 多无人机协同
1
粒子群算法的并行实现算法,有利于加深对粒子群算法的理解
2024/4/15 3:02:32 446KB 并行计算
1
对于RBF神经网路模型,利用粒子群优化算法进行对权值优化,达到准确的预测效果!
2024/2/27 15:23:12 29.92MB PSO-RB
1
用粒子群优化算法求解函数最大值和最小值问题,稍微更改一下即可求任意函数最值
2024/2/21 7:36:14 214KB 计算智能
1
关于电力负荷的SVM预测,设计了MATLAB的可视化界面,含数据,包含一般SVM,粒子群优化下的SVM,改进粒子群优化下的SVM
2024/2/20 11:01:22 44KB MATLAB 负荷预测 SVM 粒子群
1
共 95 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡