matlab编制的dijkstra算法,输入为图矩阵(N个节点,N*N),源节点编号和目的节点编号,输出为节点路径和距离
2025/10/9 12:23:02 956B Dijkst matlab
1
基于DCT数字水印算法的matlab实现
2025/10/9 12:36:37 1KB DCT 数字水印 matlab 源代码
1
matlab程序,包括3个文件:mseries.m编写了一个产生m序列的函数;
mud.m用来比较传统单用户检测、线性解相关多用户检测、最小均方误差多用户检测的误码率;
mud_plot比较后并画出误码率-信噪比曲线。
2025/10/9 6:13:05 3KB cdma
1
(1)设计一个虚拟存储区和内存工作区,编程序演示下述算法的具体实现过程,并计算各个算法的缺页率。
(2)用C语言实现,要求设计主界面以灵活选择某算法,且以下算法都要实现:a:最佳置换算法(OPT):将以后永不使用的或许是在最长(未来)时间内不再被访问的页面换出。
b:先进先出算法(FIFO):淘汰最先进入内存的页面,即选择在内存中驻留时间最久的页面予以淘汰。
c:最近最久未使用算法(LRU):淘汰最近最久未被使用的页面。
(3)程序采用人工的方法选择,依次换策略选择一个可置换的页,并计算它们的缺页率以便比较。
2025/10/9 3:06:16 144KB 操作系统课设 页面置换算法
1
遗传算法实现动力配煤+gui界面matlab7.1调试
1
人脸识别作业,主要结合主成分分析(PrincipalComponentsAnalysis,PCA)与线性判别分析(LinearDiscriminantAnalysis,LDA)的特点,提出PCA+LDA算法,并与LDA比价
2025/10/8 20:28:34 520KB 人脸识别 计算机视觉 PCA+LDA
1
在matlab中基于卡尔曼滤波的目标跟踪程序
卡尔曼滤波作为一种在多个领域中被视为一种数学方法,在信号处理和预测方面得到了广泛的应用。
特别是在目标跟踪领域,其应用效果尤为突出。
通过在MATLAB环境下开发目标跟踪程序,我们能够更高效地处理动态环境中目标的定位与预测问题。
本文将对这一主题进行深入解析:首先,介绍卡尔曼滤波的基础知识;
其次,探讨其在MATLAB中的实现方式;
最后,详细分析其在目标跟踪领域的具体应用及其实践步骤。
通过系统的学习和实践操作,可以全面掌握卡尔曼滤波器的设计与应用技巧,从而在实际工程中灵活运用这一重要算法。
卡尔曼滤波作为一种线性最小方差估计方法,是由数学家鲁道夫·卡尔曼于1960年首次提出。
它通过融合多源信息,包括观测数据和预测模型,对系统状态进行最优估计。
在目标跟踪过程中,卡尔曼滤波器能够有效结合历史估计结果与当前观测数据,从而更新目标位置的最新认知。
掌握这一技术不仅能提升信号处理能力,还能为复杂的动态系统建模提供有力支持。
卡尔曼滤波在目标跟踪中的应用主要包含以下几个关键步骤:1)状态转移模型的建立;
2)观测模型的设计;
3)预测阶段的操作流程;
4)更新阶段的具体实现方式。
每一环节都需要精确地定义其数学关系,并通过迭代计算逐步优化结果。
理解并熟练运用这些步骤,是掌握卡尔曼滤波器核心原理的关键所在。
压缩包中的内容包含以下几部分:1)新手必看.htm文件:这是一份针对编程初学者的详细指南,提供了程序的基本使用方法、参数配置以及常见问题解答等实用信息;
2)Matlab中文论坛--助努力的人完成毕业设计.url:这是一个指向MATLAB中文论坛的链接,用户可以在该平台找到丰富的学习资源和交流讨论区,以获取更多编程技巧和项目灵感;
3) kalman tracking:这是实际的MATLAB代码文件,包含了卡尔曼滤波目标跟踪算法的具体实现。
通过仔细分析这些代码,可以深入了解算法的工作原理及其实现细节。
为了更好地掌握卡尔曼滤波器的应用技术,建议采取以下学习与实践策略:第一,深入理解卡尔曼滤波的理论基础和数学模型;
第二,系统学习MATLAB编程技能;
第三,深入研究并解析相关的代码实现;
第四,结合实际数据进行仿真实验。
通过循序渐进的学习方式,可以逐步掌握这一技术的核心要点,并将其应用于各种实际场景中。
2025/10/8 10:19:25 615KB matlab 目标跟踪
1
使用机器学习算法预测泰坦尼克号存活概率分析,源码为jupternotebook格式,从数据预处理到可视化展示,特征相关性分析,到最后的几种算法预测准确率对比
2025/10/8 9:27:33 1.23MB python源码
1
仿照weka自带的简单K均值聚类算法,实现的一个简单的模糊C均值聚类算法。
2025/10/8 8:43:16 36KB weka 模糊C均值 聚类
1
针对多用户正交频分复用系统自适应资源分配问题,提出一种改进的子载波和基于差分进化算法的功率自适应分配算法。
该算法首先在均等功率下进行子载波分配,然后通过添加约束条件检测改进步骤,改进差分进化算法,并采用该算法根据设置的兼顾用户公平性与系统容量的目标函数,全局寻优实现用户间的功率分配。
仿真结果表明,算法在低算法复杂度及兼顾用户公平性的情况下实现了较高的系统容量提升,证明其有效性。
1
共 1000 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡