深入整理了雅克比方法求解特征值和特征向量,包括公式推导,最后介绍了opencv中的算法流程和实现。
2025/7/21 11:50:15 427KB 矩阵特征值 雅克比方法
1
cplex学术版求解器cplex_studio1210.linux-x86-64安装包(附Centos7安装教程)
1
fv-solver-srhd相对论流体力学方程的高阶有限体积求解器
1
puma560机器人的正逆解求解以及雅克比矩阵和动力学
1
自从烟花算法的开创性论文由谭营教授等人于2010年发表之后[1],业界对烟花算法的研究逐步深入和铺开。
通过对原始烟花算法的细致、深入的分析,针对原始烟花算法(FWA)的不足,提出了大量的改进方法,并据此发展了各种改进算法,以及与其他方法的混合方法,大大提高的原始烟花算法的性能,同时研究了烟花算法在求解不同类型优化问题的能力,还有大量的研究人员进行了烟花算法的应用研究,给出了一些典型的成功应用案例。
2025/7/18 13:39:47 4KB 烟花算法
1
本文主要是浅析了Floyd算法在校车安排与站点优化中的应用问题。
为了求解出各区域间的距离,我们建立了有权无向图,方便了求解过程。
利用图论中的Floyd算法求解出了各个区域之间的最短路径,得到了D矩阵和R矩阵(其中D矩阵直观的表达出任意两个区之间的最短路径,R矩阵又列出了任意两个区最短路径具体的路线),进而成功解决了如何安排有限个站点使得教师及其他工作人员获得满意度最高的问题。
1
各标定步骤实现方法1计算标靶平面与图像平面之间的映射矩阵计算标靶平面与图像平面之间的映射矩阵,计算映射矩阵时不考虑摄像机的成像模型,只是根据平面标靶坐标点和对应的图像坐标点的数据,利用最小二乘方法计算得到[[ix]].2求解摄像机参数矩阵由计算得到的标靶平面和图像平面的映射矩阵得到与摄像机内部参数相关的基本方程关系,求解方程得到摄像机内部参数,考虑镜头的畸变模型,将上述解方程获得的内部参数作为初值,进行非线性优化搜索,从而计算出所有参数的准确值[[x]].3求解左右两摄像机之间的相对位置关系设双目视觉系统左右摄像机的外部参数分别为Rl,Tl,与Rr,Tr,,即Rl,Tl表示左摄像机与世界坐标系的相对位置,Rr,Tr表示右摄像机与世界坐标系的相对位置[[xi]]。
因此,对于空间任意一点,如果在世界坐标系、左摄像机坐标系和右摄像机坐标系中的坐标分别为Xw,,Xl,Xr,则有:Xl=RlXw+Tl;Xr=RrXw+Tr.因此,两台摄像机之间的相对几何关系可以由下式表示R=RrRl-1;T=Tr-RrRl-1Tl在实际标定过程中,由标定靶对两台摄像机同时进行摄像标定,以分别获得两台摄像机的内、外参数,从而不仅可以标定出摄像机的内部参数,还可以同时标定出双目视觉系统的结构参数[xii]。
由单摄像机标定过程可以知道,标定靶每变换一个位置就可以得到一组摄像机外参数:Rr,Tr,与Rl,Tl,因此,由公式R=RrRl-1;T=Tr-RrRl-1Tl,可以得到一组结构参数R和T
2025/7/16 11:53:45 33KB opencv
1
这里使用栈结构完成常见的四则算术表达式求解并对不合法的算术表达式进行判断。
2025/7/15 13:55:12 22KB 数据结构 jwarray 四则运算
1
大家可以直接将数据套进去就行了,但愿对你的多组数据求解有帮助。
2025/7/13 13:03:24 30KB 数据拟合 Matlab
1
详细介绍在用蒙特卡洛法,用MATLAB软件求解机器人空间点云的方法,用原理到思路到对应的软件代码,都有给出
2025/7/12 0:06:38 1.08MB 工作空间
1
共 1000 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡