RGV动态调度问题,通过严格限定其单步时间操作完成时间最短而得到的最优化方案,在无故障率的前提下,只要限定初始RGV机车位置,便可以得到唯一的行驶轨迹和规律,通过对其初始下料顺序全排列进行优化,得到的最理想解即为接近最优解。
而在有故障率的情况下,通过weibull曲线可以得出其故障时间相关期望,由期望结合实况模拟仿真,并不断循环,可以得到无数确定初始下料顺序下的调度优解,反应出RGV运行过程在不同场景下的不同规律。
2025/5/1 12:07:08 9KB Matlab 国赛 数模 RGV
1
【算法设计与分析】是计算机科学中的核心课程,主要探讨如何有效地解决问题并设计高效计算过程。
这门课程由中国大学MOOC提供,由北京航空航天大学(北航)的专家讲授,旨在帮助学生理解和掌握基础算法及其分析方法。
通过学习这门课程,学生将能够运用所学知识解决实际问题,提升编程能力,以及对复杂度理论有深入的理解。
课程内容可能涵盖以下几个方面:1.**排序算法**:包括经典的冒泡排序、插入排序、选择排序、快速排序、归并排序和堆排序等,以及更高效的算法如计数排序、桶排序和基数排序。
这些算法的比较和分析有助于理解不同情况下的最佳选择。
2.**搜索算法**:如深度优先搜索(DFS)、广度优先搜索(BFS)、Dijkstra算法和Floyd-Warshall算法,用于解决图论问题和最短路径寻找。
3.**动态规划**:这是解决多阶段决策问题的有效方法,例如斐波那契序列、背包问题、最长公共子序列和最短编辑距离等。
4.**贪心算法**:在每一步都选择局部最优解,以期达到全局最优。
典型应用如霍夫曼编码和Prim或Kruskal的最小生成树算法。
5.**分治策略**:将大问题分解为小问题,然后递归地解决。
典型的例子有归并排序、快速排序和大整数乘法。
6.**回溯法与分支限界**:用于在大规模搜索空间中找到解决方案,如八皇后问题和N皇后问题。
7.**图论与网络流**:包括最大流问题、最小割问题,以及Ford-Fulkerson和Edmonds-Karp算法。
8.**数据结构**:如链表、队列、栈、树(二叉树、平衡树如AVL和红黑树)、哈希表等,它们是算法的基础。
9.**复杂度理论**:介绍时间复杂度和空间复杂度的概念,以及P类和NP类问题,理解算法效率的重要性。
课程链接提供的博客可能包含课程的代码实现,这对于理解算法的实际操作和优化至关重要。
实践是检验和加深理论知识的最好方式。
学生可以通过这些代码实现来锻炼编程技能,同时理解算法在真实场景中的表现。
"中国大学MOOC-算法设计与分析"是一门全面介绍算法和分析技巧的课程,对于计算机科学专业的学生以及对算法感兴趣的任何人都极具价值。
通过学习,不仅可以掌握多种算法,还能培养问题解决和分析能力,为未来的学术研究或职业发展奠定坚实基础。
2025/4/26 11:14:57 30.82MB 算法设计与分析 基础算法
1
一方面采用遗传算法进行全局搜索,一方面采用非线性规划算法进行局部搜索,得到问题的全局最优解。
2025/4/13 20:39:31 24KB 实用
1
英文原版,英文好的可以看一下良好的理论分析特性,高效的实际可计算性和强大的建模能力是大家选择凸建模的原因。
注意,我这里说的是凸建模!科学研究的第一步是对实际问题抽象近似,建模成数学问题,这里有巨大的选择自由度!虽然非凸建模具有最强的表达能力,也最省事,代价却是理论上难以分析和实际中无法可靠计算!近十年来火的一塌糊涂的压缩感知,稀疏表示和低秩恢复都是由凸建模带动起来的!研究者们通过分析凸问题的性质来解释和理解真实世界的机理!要注意,很多这样的问题几十年前就已经有非凸的表达形式了,只有用凸建模才焕然一新!更进一步,通过对凸建模的深入理解,大家对具体的非凸问题,注意不是所有,开始利用特殊的结构特点做分析,得出了一些很深刻的结果,比如神经网络收敛到局部最优解,而不是平稳点,随机算法有助于逃离鞍点。
但是,非凸分析几乎都是casebycase,没有统一有效的手段,这与凸分析差别甚大。
从这个角度来说,凸建模和凸优化是研究实际问题的首选!作者:知乎用户链接:https://www.zhihu.com/question/24641575/answer/136736625来源:知乎著作权归作者所有。
商业转载请联系作者获得授权,非商业转载请注明出处。
2025/3/6 4:58:51 5.74MB 凸优化
1
遗传算法(GeneticAlgorithm)是模拟达尔文生物进化论的自然选择和遗传学机理的生物进化过程的计算模型,是一种通过模拟自然进化过程搜索最优解的方法。
遗传算法可以解决多种优化问题,如:TSP问题、生产调度问题、轨道优化问题等,在现代优化算法中占据了重要的地位,本例使用遗传算法求解最优解。
2025/3/1 1:10:51 5KB 遗传算法
1
1基于遗传算法的TSP算法(王辉)2基于遗传算法和非线性规划的函数寻优算法(史峰)3基于遗传算法的BP神经网络优化算法(王辉)4设菲尔德大学的MATLAB遗传算法工具箱(王辉)5基于遗传算法的LQR控制优化算法(胡斐)6遗传算法工具箱详解及应用(胡斐)7多种群遗传算法的函数优化算法(王辉)8基于量子遗传算法的函数寻优算法(王辉)9多目标Pareto最优解搜索算法(胡斐)10基于多目标Pareto的二维背包搜索算法(史峰)11基于免疫算法的柔性车间调度算法(史峰)12基于免疫算法的运输中心规划算法(史峰)13基于粒子群算法的函数寻优算法(史峰)14基于粒子群算法的PID控制优化算法(史峰)15基于混合粒子群算法的TSP寻优算法(史峰)16基于动态粒子群算法的动态环境寻优算法(史峰)17粒子群算法工具箱(史峰)18基于鱼群算法的函数寻优算法(王辉)19基于模拟退火算法的TSP算法(王辉)20基于遗传模拟退火算法的聚类算法(王辉)21基于模拟退火算法的HEV能量管理策略参数优化(胡斐)22蚁群算法的优化计算——旅行商问题(TSP)优化(郁磊)23基于蚁群算法的二维路径规划算法(史峰)24基于蚁群算法的三维路径规划算法(史峰)25有导师学习神经网络的回归拟合——基于近红外光谱的汽油辛烷值预测(郁磊)26有导师学习神经网络的分类——鸢尾花种类识别(郁磊)27无导师学习神经网络的分类——矿井突水水源判别(郁磊)28支持向量机的分类——基于乳腺组织电阻抗特性的乳腺癌诊断(郁磊)29支持向量机的回归拟合——混凝土抗压强度预测(郁磊)30极限学习机的回归拟合及分类——对比实验研究(郁磊)
2025/1/13 3:54:45 1.92MB 算法 机器学习 matlab
1
随机给定一个3×3的矩阵,其元素为8个不同的数码,起始状态为S0,目标状态为Sg,要求用两种或以上的方法设计优先队列式分支限界法,寻找从初始状态变换到目标状态的最优解,说明不同的优先选择策略变换到最终状态用了多少步,并对获得的结果做出比较分析。
最终状态均如Sg表示。
2025/1/7 21:51:43 5KB 八数码 C++ 分支限界
1
用C++实现了梯度下降求多元函数极值的算法,有可能会陷入局部最优解。
2024/12/24 16:58:37 2KB 梯度下降
1
求解以最小最大函数为目标带有约束的最优解matlab程序
2024/11/19 1:40:44 2KB matlab 最小最大最优
1
TSPLIB数据集、数据集的使用方法及相应的最优解,可用作智能算法测试集benchmarkforACO/GA/PCO
2024/11/10 8:12:01 2.09MB TSPLIB
1
共 110 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡