该程序需要在主页面先下载wall_delay程序,该程序在墙后建立了长为2米,宽为0.6米的矩形,利用后投影算法以及快速时延估计进行成像。
并且计算最佳带宽,最佳中心频率,阵列天线数量,陈列天线间隔。
使得成像质量很好。
缺点在于:计算量偏大。
1
IxChariot可以用于对防火墙(或其它网络设备)进行压力测试,得到防火墙(或其它网络设备)在不同应用、不同参数下的吞吐量、时延、丢包、反应时间等性能参数。
2025/5/1 11:42:52 59MB 网络测试
1
IEEE802.1AS标准是一组应用与以太模式下的城域网及接入网络的时间同步。
该标准所规范的协议严格保证了时延敏感的业务(声音、视频等)在基于以太的桥接网络或虚拟桥接网络等时延固定或对称的传输媒质中的同步传送。
其内容包括在网络正常运行或添加、移除或重配置网络组件和网络故障时对时间同步机制的维护,并规范了IEEE1588在IEEE标准802.1Q和802.1D中的应用。
2025/4/27 19:19:12 2.09MB 车载以太网 AVB 时间同步
1
固定时延系统一致性的MATLAB仿真例子
2025/3/30 14:20:44 6KB 时延;一致性
1
unity通过rtmp协议实现海康摄像头的实时连接unity通过rtmp协议实现海康摄像头的实时连接,时延由自己带宽决定!!!可运行,可实现播放功能
2025/3/29 22:33:43 75.74MB 3d
1
《VoIP技术构架(第2版·修订版)》解释了今天的一个基本的电话架构的建立和工作、有关语音和数据组网的主要概念、在数据网上传输语音和与电话系统互联的IP信令协议。
通过阅读本书,读者可以理解企业与公共电话组网、IP组网和语音在IP网络传输的相关知识;
学习数据语音网络集成的种种注意事项;
验证基本VoIP信令协议(H.323、MGCP/H.248、SIP)和已有的主要语音信令协议(ISDN、C7/SS7);
探索VoIP怎样以更有效和更广泛的方式来实现现有电话系统上的应用;
深入研究抖动、时延、分组丢失、编码、QoS工具和安全等VoIP主题
2025/3/20 16:25:02 42.34MB VOIP语音
1
Java不仅具有可移植性、安全性和支持可视化图形界面等特点,而且是一种跨平台、适合于分布式计算环境的面向对象编程语言,它可将网络与多媒体整合,逐步成为网络语言的主流。
本文利用Java的这些特点,开发了应用于Internet上的网络电话系统,该系统能够实现PC到PC之间的语音通话,经测试语音质量和时延都能满足实际的需要。
2025/3/18 15:43:23 291KB java
1
从码字的非周期互相关函数出发,分析异步相干扩时光码分多址(OCDMA)系统的多址干扰(MAI)和差拍噪声(BN)。
干扰用户不同的传输时延,非周期互相关强度均值随之变化,差拍噪声和多址干扰也随之变化。
给出了差拍噪声和多址干扰与非周期互相关强度均值的关系,讨论了异步相干扩时OCDMA系统的误码率(BER)与非周期互相关强度均值的关系。
最后,以码长511的Gold码为例,针对干扰用户之间不同的传输时延,得到了异步相干扩时OCDMA系统的误码率上界与平均误码率性能。
在平均误码率情况下,OCDMA系统能支持12个干扰用户,而在最差情况下(误码率上界),系统容纳的干扰用户数不超过4个。
1
沿RF锁相辅助的光纤环路链路上任意中间点的精确时延感测和工作台频率分配
2024/12/28 18:50:19 640KB 研究论文
1
第一章1、构成现代通信网的要素有哪些?它们各自完成什么功能?它们之间相互通信通过什么机制实现?答:(1)从硬件结构来看:由终端节点、变换节点、业务节点、传输系统构成。
功能:完成接入交换网的控制、管理、运营和维护。
(2)从软件结构来看:它们有信令、协议、控制、管理、计费等。
功能:完成通信协议以及网络管理来实现相互间的协调通信。
(3)通过保持帧同步和位同步、遵守相同的传输体制。
2、在通信网中交换节点主要完成哪些功能?无连接网络中交换节点实现交换的方式与面向连接的网络中交换节点的实现方式有什么不同?分组交换型网络与电路交换型网络节点实现交换的方式有什么不同?答:(1)完成任意入线的信息到指定出线的交换功能(2)无连接型网络不用呼叫处理和记录连接状态,但是面向连接的网络需要。
(3)电路交换的交换节点直接在预先建立的连接上进行处理、时延小,分组交换以“存储—转发”方式工作,时延大。
3、现代通信网为什么要采用分层结构?画出对等层之间的通信过程?答:(1)降低网络设计的复杂度、方便异构网络间的相互连通、增强网络的可升级性、促进了竞争和设备制造商的分工。
(2)图略
2024/12/7 0:40:28 66KB 通信网 答案
1
共 93 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡