基于逻辑回归的评分卡技术研究,硕士论文,很实用。
数据预处理部分很详实。
2024/1/28 23:33:51 4.15MB 评分卡
1
kaggle比赛HousePrices之数据预处理部分的完整代码,包含非常详细的注释,属于数据挖掘预处理的经典流程性代码。
2024/1/12 19:09:33 2KB kaggle
1
ENVI高分二号PMS数据预处理流程包括参数设置,傻瓜式的技术流程非常详细
2023/12/29 13:54:34 3.23MB GF2数据处理
1
目录:第一章绪论1·1生物视觉通路简介1·2Marr的计算视觉理论框架1·3本书各章内容简介1·4计算机视觉的现状与阅读本书需注意的问题思考题参考文献第二章边缘检测2·1边缘检测与微分滤波器2·2边缘检测与正则化方法2·3多尺度滤波器与过零点定理2·4最优边缘检测滤波器2·5边缘检测快速算法2·6图像低层次处理的其他问题思考题参考文献第三章射影几何与几何元素表达3·1仿射变换与射影变换的几何表达3·2仿射坐标系与射影坐标系3·3仿射变换与射影变换的代数表达3·4不变量3·5由对应点求射影变换3·6点3·7指向和方向3·8平面直线及点线对偶关系3·9空间平面及点面对偶关系3·10空间直线3·11二次曲线与二次曲面思考题参考文献第四章摄像机定标4·1线性模型摄像机定标4·2非线性模型摄像机定标4·3立体视觉摄像机定标4·4机器人手眼定标4·5摄像机自定标技术思考题参考文献第五章立体视觉5·1立体视觉与三维重建5·2极线约束5·3对应基元匹配5·4射影几何意义下的三维重建思考题参考文献第六章运动与不确定性表达6·1欧氏平面上的刚体运动6·2欧氏空间中的刚体运动6·3不确定性的描述6·4不确定性的运算6·5不确定性运算的几个例子6·6三维直线段的不确定性6·7不确定性的显示思考题参考文献第七章基于光流场的运动分析7·1光流场和运动场7·2光流的约束方程7·3微分技术7·4其他方法7·5基于光流场的定性运动解释思考题参考文献第八章长序列运动图像特征跟踪8·1引论8·2参数估计理论初步8·3特征运动模型8·4特征跟踪的阐述8·5匹配8·6实际应用中需要考虑的问题思考题参考文献第九章基于二维特征对应的运动分析9·1极线方程和本质矩阵9·2基于点匹配的运动计算9·3图像是一个空间平面的投影时的运动计算9·4基于直线匹配的运动计算9·5基本矩阵的估计思考题参考文献第十章基于三维特征对应的运动分析10·1由三维点匹配估计运动10·2不需显式匹配的方法10·3从三维直线匹配估计运动10·4从平面匹配估计运动10·5二维-三维的物体定位思考题参考文献第十一章由图像灰度恢复三维物体形状11·1辐射度学与光度学11·2光照模型11·3由多幅图像恢复三维物体形状11·4由单幅图像恢复三维物体形状思考题参考文献第十二章建模与识别12·1CAD系统中的三维模型表达12·2曲线与曲面的表达12·3三维世界的多层次模型12·4由二维图像建模12·5识别的一般原则——问题与策略12·6特征关系图匹配12·7“假设检验”识别方法思考题参考文献第十三章距离图像获取与处理13·1距离传感器13·2数据预处理13·3深度图分割思考题参考文献第十四章计算机视觉系统体系结构讨论与展望14·1计算机视觉系统的基本体系结构14·2视觉系统体系结构讨论14·3主动视觉14·4计算机视觉的应用展望参考文献附录A实验数据及参考结构A·1图像的格式A·2摄像机定标A·3立体视觉A·4基于光流场的运动分析A·5长序列运动图像特征跟踪A·6基于二维特征对应的运动分析A·7基于三维特征对应的运动分析
2023/12/23 18:13:56 13.62MB 计算机视觉 马颂德 张正友
1
竞赛时写的一个python小程序,得了0.93分,思路如下,1读取训练集、2数据预处理、3上模型、4将模型应用到预测及、5生成预测结果
2023/12/22 20:57:51 2KB python
1
LANDSAT8数据预处理,辐射定标与大气校正
2023/11/26 1:28:22 6KB IDL
1
一步步教你如何搭建机器翻译系统,包括:1.机器翻译现状41.1什么是机器翻译?41.2相关论文71.3相关会议81.4相关工具82.NMT系统搭建指导92.1获取数据92.2数据预处理102.3模型训练122.4模型的解码及bleu计算133.系统的优化153.1模型的ensemble153.2定制化领域微调153.3迁移学习154.翻译引擎的部署164.1翻译系统概述164.2基于Tensor2tensor的引擎部署164.3简单系统搭建174.4多个模型共同部署的方案185.机器翻译进阶195.1爬虫技术195.2数据清洗195.3数据增强205.4翻译质量评估216.常用框架概述226.1Tensor2tensor226.2Nematus296.3Marian296.4其他框架307.其他307.1Bleu原理307.2BPE原理30
2023/9/26 1:34:17 2.05MB 机器翻译 人工智能 t2t
1
本书对数据挖掘的基本算法进行了系统介绍,每种算法不仅介绍了算法的基本原理,而且配有大量例题以及源代码,并对源代码进行了分析,这种理论和实践相结合的方式有助于读者较好地理解和掌握抽象的数据挖掘算法。
全书共分11章,内容同时涵盖了数据预处理、关联规则挖掘算法、分类算法和聚类算法,具体章节包括绪论、数据预处理、关联规则挖掘、决策树分类算法、贝叶斯分类算法、人工神经网络算法、支持向量机、Kmeans聚类算法、K中心点聚类算法、神经网络聚类算法以及数据挖掘的发展等内容。
本书可作为高等院校数据挖掘课程的教材,也可以作为从事数据挖掘工作以及其他相关工程技术工作人员的参考书。
第1章绪论11.1数据挖掘的概念11.2数据挖掘的历史及发展11.3数据挖掘的研究内容及功能51.3.1数据挖掘的研究内容51.3.2数据挖掘的功能61.4数据挖掘的常用技术及工具91.4.1数据挖掘的常用技术91.4.2数据挖掘的工具121.5数据挖掘的应用热点121.6小结14思考题15第2章数据预处理162.1数据预处理的目的162.2数据清理182.2.1填充缺失值182.2.2光滑噪声数据182.2.3数据清理过程192.3数据集成和数据变换202.3.1数据集成202.3.2数据变换212.4数据归约232.4.1数据立方体聚集232.4.2维归约232.4.3数据压缩242.4.4数值归约252.4.5数据离散化与概念分层282.5特征选择与提取302.5.1特征选择302.5.2特征提取312.6小结33思考题33第3章关联规则挖掘353.1基本概念353.2关联规则挖掘算法——Apriori算法原理363.3Apriori算法实例分析383.4Apriori算法源程序分析413.5Apriori算法的特点及应用503.5.1Apriori算法特点503.5.2Apriori算法应用513.6小结52思考题52第4章决策树分类算法544.1基本概念544.1.1决策树分类算法概述544.1.2决策树基本算法概述544.2决策树分类算法——ID3算法原理564.2.1ID3算法原理564.2.2熵和信息增益574.2.3ID3算法594.3ID3算法实例分析604.4ID3算法源程序分析644.5ID3算法的特点及应用724.5.1ID3算法特点724.5.2ID3算法应用724.6决策树分类算法——C4.5算法原理734.6.1C4.5算法734.6.2C4.5算法的伪代码754.7C4.5算法实例分析764.8C4.5算法源程序分析774.9C4.5算法的特点及应用1014.9.1C4.5算法特点1014.9.2C4.5算法应用1014.10小结102思考题102第5章贝叶斯分类算法1035.1基本概念1035.1.1主观概率1035.1.2贝叶斯定理1045.2贝叶斯分类算法原理1055.2.1朴素贝叶斯分类模型1055.2.2贝叶斯信念网络1075.3贝叶斯算法实例分析1105.3.1朴素贝叶斯分类器1105.3.2BBN1125.4贝叶斯算法源程序分析1145.5贝叶斯算法特点及应用1195.5.1朴素贝叶斯分类算法1195.5.2贝叶斯信念网120思考题121第6章人工神经网络算法1226.1基本概念1226.1.1生物神经元模型1226.1.2人工神经元模型1236.1.3主要的神经网络模型1246.2BP算法原理1266.2.1Delta学习规则的基本原理1266.2.2BP网络的结构1266.2.3BP网络的算法描述1276.2.4标准BP网络的工作过程1296.3BP算法实例分析1306.4BP算法源程序分析1346.5BP算法的特点及应用1436.5.1BP算法特点1436.5.2BP算法应用1446.6小结145思考题145第7章支持向量机146
2023/9/24 16:34:35 31.33MB 数据挖掘 算法 数据仓库
1
matlab贝叶斯分类源码,数据集为UCI下载的Iris,代码包括数据预处理
2023/9/7 3:57:05 4KB matlab bayes
1
DMSP/OLS夜光数据,SNPP/VIIRS夜光数据及其应用领域,包括两个数据的下载地址,卫星及传感器基本参数,时间序列产品基本介绍(空间和时间分辨率,覆盖范围,投影坐标,子产品介绍,如DMSP的平均灯光强度、稳定灯光强度、观测频次数据、平均灯光XPct数据、缺点、辐射定标产品及辐射校正方法,VIIRS数据预处理方法),两种数据的比较及其在城市发展,能源经济等方面的应用。
1
共 39 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡