目录第1章数字信号处理引言  1.1引言  1.2数字信号处理起源  1.3信号域  1.4信号分类  1.5DSP:一个学科第2章采样原理  2.1引言  2.2香农采样原理  2.3信号重构  2.4香农插值  2.5采样方法  2.6多通道采样  2.7MATLAB音频选项第3章混叠  3.1引言  3.2混叠  3.3圆判据  3.4IF采样第4章数据转换和量化  4.1域的转换  4.2ADC分类  4.3ADC增强技术  4.4DSP数据表示方法  4.5量化误差  4.6MAC单元  4.7MATLAB支持工具第5章z变换  5.1引言  5.2z变换  5.3原始信号  5.4线性系统的z变换  5.5z变换特性  5.6MATLABz变换设计工具  5.7系统稳定性  5.8逆z变换  5.9赫维赛德展开法  5.10逆z变换MATLAB设计工具  第6章有限冲激响应滤波器[1]6.1引言  6.2FIR滤波器  6.3理想低通FIR滤波器  6.4FIR滤波器设计  6.5稳定性  6.6线性相位  6.7群延迟  6.8FIR滤波器零点位置  6.9零相位FIR滤波器  6.10最小相位滤波器第7章窗函数设计法  7.1有限冲激响应综述  7.2基于窗函数的FIR滤波器设计  7.3确定性设计  7.4数据窗  7.5基于MATLAB窗函数的FIR滤波器设计  7.6Kaiser窗函数  7.7截尾型傅里叶变换设计方法  7.8频率采样设计法第8章最小均方设计方法  8.1有限冲激响应综述  8.2最小二乘法  8.3最小二乘FIR滤波器设计  8.4MATLAB最小均方设计  8.5MATLAB设计对比  8.6PRONY方法第9章等波纹设计方法  9.1等波纹准则  9.2雷米兹交换算法  9.3加权等波纹FIR滤波器设计  9.4希尔伯特等波纹FIR滤波器  9.5等波纹滤波器阶次估计  9.6MATLAB等波纹FIR滤波器实现  9.7LPFIR滤波器设计  9.8基于Lp范数的MATLAB滤波器设计第10章FIR滤波器特例  10.1引言  10.2滑动平均FIR滤波器  10.3梳状FIR滤波器[1]10.4L波段FIR滤波器  10.5镜像FIR滤波器  10.6补码FIR滤波器  10.7频率抽样滤波器组  10.8卷积平滑FIR滤波器  10.9非线性相位FIR滤波器  10.10FarrowFIR滤波器第11章FIR的实现  11.1概述  11.2直接型FIR滤波器  11.3转置结构  11.4对称FIR滤波器结构  11.5格型FIR滤波器结构  11.6分布式算法  11.7正则符号数  11.8简化加法器图  11.9FIR有限字长效应  11.10计算误差  11.11缩放  11.12多重MAC结构[1]第12章经典滤波器设计  12.1引言  12.2经典模拟滤波器  12.3模拟原型滤波器  12.4巴特沃斯原型滤波器  12.5切比雪夫原型滤波器  12.6椭圆原型滤波器  12.7原型滤波器到最终形式的转换  12.8其他IIR滤波器形式  12.9PRONY(PADE)法  12.10尤尔—沃尔第13章无限冲激响应滤波器设计  13.1引言  13.2冲激响应不变法  13.3冲激响应不变滤波器设计  13.4双线性z变换法  13.5翘曲  13.6MATLABIIR滤波器设计  13.7冲激响应不变与双线性z变换IIR对比  13.8最优化第14章状态变量滤波器模型  14.1状态空间系统  14.2状态变量  14.3模拟仿真  14.4MATLAB仿真  14.5状态变量模型  14.6基变换  14.7MATLAB状态空间  14.8转置系统  14.9MATLAB状态空间算法结构第15章数字滤波器结构  15.1滤波器结构  15.2直Ⅰ、Ⅱ型结构  15.3直Ⅰ、Ⅱ型IIR滤波器的MATLAB相关函数  15.4直Ⅰ、Ⅱ型结构的MATLAB实现  15.5级联型结构  15.6一阶、二阶子滤波器  15.7一阶、二阶子滤波器的MATLAB实现[1]15.8并联型结构  15.9级联/并联型结构的MATLAB实现  15.10梯型/格型IIR滤波器第16章定点效应  16.1背景  16.2定点系统  16.3溢
1
矢量数据空间数据压缩的实现,主要是采用隔点抽样法,根据输入的点数进行矢量数据的压缩
2024/7/6 17:44:18 10KB 隔点抽样法 矢量 压缩
1
我的课程作业……包括Metropolis,MetropolisHastings,LaplaceApproximation,Gibbs,Bayesianlinerregression,Bayesianlogisticregression的原理简单介绍和算法,水平有限一定会有错,发这就是为了保存一下我辉煌的过去,我还这么认真学习过呜呜呜
2024/6/26 15:14:18 1002KB R语言 抽样方式
1
《概率论与数理统计:英文本》简介:  本书从ThomsonLearning出版公司引进。
本书主要介绍了概率统计的基本思想、概念和方法,从各个应用层面和案例入手,使用尽量少的概率知识介绍了应用统计的基本内容和扩展内容。
阅读本书,不需要微积分学知识,只需具备高中数学水平即可。
本书着重思维、层次分明、大量案例与练习以统计软件Minitab作统计分析,使用方便,适合于工科、经济、管理类专业学生作为概率统计双语教材使用,也可供教师教学参考。
本书主要内容有:0.统计学简介;
1.用图表描述数据;
2.用数值方法描述数据;
3.双变量数据的描述;
4.概率及概率分布;
5.几个有用的离散型分布;
6.正态概率分布;
7.抽样分布;
8.大样本估计;
9.大样本假设检验;
10.从小样本推断;
11.方差分析;
12.线性回归及相关性;
13.多元线性回归;
14.范畴数据分析;
15.非参数统计。
2024/6/2 18:52:11 1.96MB keytoexercis
1
微软sqlserver2008将整个数据挖掘流程定义为挖掘结构、挖掘模型、挖掘模型查看器、挖掘准确性图表和挖掘模型预测五个步骤,本文将讨论如何在sqlserver2008中验证已经建好的数据挖掘模型。
1.为什么要对数据挖掘模型进行验证当我们建立好一个数据挖掘模型时,并不能保证所建模型能够直接的解决商业问题,我们要使用多种方法来评估和检验数据挖掘模型的质量和特征。
我们可以将将数据分为定型集和测试集来评估数据挖掘模型。
通过将数据集分区为定型集和测试集时,定型集是取大多数数据,小部分数据用于测试。
通过对全部数据的整体数据抽样,我们要保证定型集和测试集的相似。
通过使用相似的数据来进行定型和测试,可以更
1
Python_验证采样定理利用傅里叶变换与反变换进行抽样与还原,验证采样定理.①原频率固定采样频率改变②采样频率固定原频率改变
2024/4/21 21:34:44 3KB Python 采样定理
1
低通抽样定理matlab实现配书《通信原理基于Matlab的计算机仿真》例题7-1
2024/4/14 3:45:02 714B 低通抽样定理 matlab实现
1
奥本海姆(AlanV.Oppenheim)教授是美国麻省理工学院电子学研究实验室(ELE)的首席研究员,其研究领域包括在一般领域的信号处理及应用。
奥本海默教授是美国国家工程院院士(NationalAcademyofEngineering)和IEEE会士,也是EtaKappaNu和SigmaXi的联谊会会员。
同时他还是古根海姆(Guggenheim)学者和以色列特拉维夫大学赛克勒尔(Sackler)学者。
奥本海姆教授因其出色的科研和教学工作多次获奖,其中包括IEEE教育勋章、IEEE百年杰出贡献奖、IEEE在声学、语音和信号处理领域的社会与科学成就奖和资深成就奖。
2007年他还获得了IEEEJackS.Kilby信号处理奖章。
目录第1章信号与系统SignalsandSystems第2章线性时不变系统LinearTime—InvariantSystems第3章周期信号的傅里叶级数表示FourierSeriesRepresentationofPeriodicSignals第4章连续时间傅里叶变换TheContinuous—TimeFourierTransform第5章离散时间傅里叶变换TheDiscreteTimeFourierTransf01Tll第6章信号与系统的时域和频域特性Time—andFrequeneyCharacterizationofSignalsandSystems第7章抽样Sampling第8章通信系统CommunicationSystems第9章拉普拉斯变换TheLaplaceTransform第10章Z变换TheZTransf01TII第11章线性反馈系统LinearFeedbackSystems附录部分分式展开Partial-FractionExpansion参考文献Bibliography习题答案Answers索引Inde
2024/3/30 6:27:02 12.41MB 信号与系统
1
升余弦脉冲信号的抽样及恢复过程,验证抽样定理,解释详细。
2024/3/16 13:22:57 2KB 抽样
1
基于MATLAB的设计fir低通滤波器,采用方法是频率抽样法
2024/3/11 21:55:56 260KB MATLAB FIR
1
共 69 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡