在推荐算法中,样本空间构成的数据矩阵一般为稀松矩阵,且维数一般较多,可通过求取特征值或者奇异值的方式获得样本矩阵的特征矩阵,从而降低维数。
主成分分析法在矩阵降维中有很好的应用。
本文通过特征值分解、奇异值分解、PCA等操作可以获得降维后的矩阵,通过使用不同的相似度判别法获得最好的相似度,可以使得推荐算法具有很好的效果。
2024/2/3 9:17:28 360KB 推荐系统 主成分分析
1
为了辨识一类非线性Hammerstein-Wiener系统,基于递推贝叶斯算法和奇异值分解,提出了一种两阶段在线辨识算法。
该算法首先利用递推贝叶斯算法估计乘积项参数,然后利用奇异值分解得到待估计参数。
仿真结果表明,所提算法可以较小的计算量获得精度较高的参数估计值。
1
徐士良C常用算法程序集第三版高清电子书+源代码,经典之作,算法必备参考资料第1章多项式的计算1.1一维多项式求值1.2一维多项式多组求值1.3二维多项式求值1.4复系数多项式求值1.5多项式相乘1.6复系数多项式相乘1.7多项式相除1.8复系数多项式相除第2章复数运算2.1复数乘法2.2负数除法2.3复数乘幂2.4复数的n次方根2.5复数指数2.6复数对数2.7复数正弦2.8复数余弦第3章随机数的产生3.1产生0到1之间均匀分布的一个随机数3.2产生0到1之间均匀分布的随机数序列3.3产生任意区间内均匀分布的一个随机整数3.4产生任意区间内均匀分布的随机整数序列3.5产生任意均值与方差的正态分布的一个随机数3.6产生任意均值与方差的正态分布的随机数序列第4章矩阵运算4.1实矩阵相乘4.2复矩阵相乘4.3一般实矩阵求逆4.4一般复矩阵求逆4.5对称正定矩阵的求逆4.6托伯利兹矩阵求逆的特兰持方法4.7求一般行列式的值4.8求矩阵的值4.9对称正定矩阵的乔里斯基分解与列式求值4.10矩阵的三角分解4.11一般实矩阵的QR分解4.12一般实矩阵的奇异值分解4.13求广义逆的奇异值分解法第5章矩阵特征值与特征向量的计算5.1约化对称矩阵为对称三对角阵的豪斯荷尔德变换法5.2求对称三对角阵的全部特征值与特征向量5.3约化一般实矩阵为赫申伯格矩阵的初等相似变换法5.4求赫身伯格矩阵全部特征的QR方法5.5求实对称矩阵特征值与特征向量的雅可比法5.6求实对称矩阵特征值与特征向量的雅可比过关法第6章线性代数方程组的求解6.1求解实系数方程组的全选主元高斯消去法6.2求解实系数方程组的全选主元高斯-约当消去法6.3求解复系数方程组的全选主元高斯消去法6.4求解复系数方程组的全选主元高斯-约当消去法6.5求解三对角线方程组的追赶法6.6求解一般带型方程组6.7求解对称方程组的分解法6.8求解对称正定方程组的平方根法6.9求解大型系数方程组6.10求解托伯利兹方程组的列文逊方法6.11高斯-塞德尔失代法6.12求解对称正定方程组的共岿梯度法6.13求解线性最小二乘文体的豪斯伯尔德变换法6.14求解线性最小二乘问题的广义逆法6.15求解病态方程组第7章非线性方程与方程组的求解7.1求非线性方程一个实根的对分法7.2求非线性方程一个实根的牛顿法7.3求非线性方程一个实根的埃特金矢代法7.4求非线性方程一个实根的连分法7.5求实系数代数方程全部的QR方法7.6求实系数方程全部的牛顿下山法7.7求复系数方程的全部根牛顿下山法7.8求非线性方程组一组实根的梯度法7.9求非线性方程组一组实根的拟牛顿法7.10求非线性方程组最小二乘解的广义逆法7.11求非线性方程一个实根的蒙特卡洛法7.12求实函数或复函数方程一个复根的蒙特卡洛法7.13求非线性方程组一组实根的蒙特卡洛法第8章插值与逼近8.1一元全区间插值8.2一元三点插值8.3连分式插值8.4埃尔米特插值8.5特金逐步插值8.6光滑插值8.7第一种边界条件的三次样条函数插值8.8第二种边界条件的三次样条函数插值8.9第三种边界条件的三次样条函数插值8.10二元三点插值8.11二元全区间插值8.12最小二乘曲线拟合8.13切比雪夫曲线拟合8.14最佳一致逼近的里米兹方法8.15矩形域的最小二乘曲线拟合第9章数值积分9.1变补长梯形求积法9.2变步长辛卜生求积法9.3自适应梯形求积法9.4龙贝格求积法9.5计算一维积分的连分式法9.6高振荡函数求积法9.7勒让德-高斯求积法9.8拉盖尔-高斯求积法9.9埃尔米特-高斯求积法9.10切比雪夫求积法9.11计算一维积分的蒙特卡洛法9.12变步长辛卜生二重积分方法9.13计算多重积分的高斯方法9.14计算二重积分的连分方式9.15计算多重积分的蒙特卡洛法第10章常微分方程组的求解10.1全区间积分的定步长欧拉方法10.2积分一步的变步长欧拉方法10.3全区间积分维梯方法10.4全区间积分的定步长龙格-库塔方法10.5积分一步的变步长龙格-库塔方法10.6积分一步的变步长基尔方法10.7全区间积分的变步长默森方法10.8积分一步的连分方式10.9全区间积分的双边法10.10全区间积分的阿当姆斯预
2023/12/25 19:29:22 6.3MB C语言 算法 程序集
1
矩阵的转置、行列式、秩,逆矩阵求法,矩阵的三角分解、qr分解,对称正定矩阵的乔里斯基分解及行列式值,奇异值分解,广义逆的奇异值分解,矩阵特征值与特征向量的各种计算方法。
2023/12/24 7:44:24 82KB 矩阵,C++
1
张量高阶奇异值分解HOSVD算法,可以用于数字图像处理和信道估计方面。
2023/12/4 0:53:18 863B HOSVD
1
使用混合奇异值阈值算子的图像去噪
2023/11/29 17:55:46 2.25MB 研究论文
1
对输入的一个信号进行矩阵化,并对此矩阵进行奇异值分解,以完成对信号的分析和处理
2023/11/29 4:38:52 16KB 奇异值分解
1
其中包含奇异值分解/L曲线/tikhonov正则化方法等正则化方法的matlab程序
2023/11/8 2:21:31 22KB 奇异值分解 正则化方法 L曲线
1
在MVG(多视图几何)和机器学习领域,求解线性方程组几乎是所有算法的根本,本文旨在帮助读者搞懂矩阵分解与线性方程组的关系,并给出利用SVD求解线性方程组的实战代码。
本资源是博文"【动手学MVG】矩阵分解与线性方程组的关系,求解线性方程组实战代码"的完整工程。
博文链接:https://blog.csdn.net/a435262767/article/details/108774141
2023/11/2 19:13:07 842KB 线性方程组求解 SVD QR分解 矩阵分解
1
抽象信道估计对于具有混合预编码的毫米波(mmWave)大规模MIMO是具有挑战性的,因为射频(RF)链的数量远小于天线的数量。
传统的基于压缩感测的信道估计方案由于信道角度量化而遭受严重的分辨率损失。
为了提高信道估计精度,本文提出了一种基于迭代重测(IR)的超分辨率信道估计方案。
通过梯度下降法优化目标函数,所提出的方案可以迭代地将估计的到达/离开角度(AoAs/AoD)移向最优解,并最终实现超分辨率信道估计。
在优化中,权重参数用于控制稀疏度和数据拟合误差之间的权衡。
另外,开发基于奇异值分解(SVD)的预处理以降低所提出的方案的计算复杂度。
仿真结果验证了该方案比传统解决方案更好的性能。
2023/10/1 15:37:31 108KB 信道估计 massive mimo
1
共 39 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡