首页 人工智能 机器学习     /    【机器学习】菜菜的sklearn课堂(1-12全课).zip

【机器学习】菜菜的sklearn课堂(1-12全课).zip

上传者: zzx188891020 | 上传时间:2024/2/5 9:49:43 | 文件大小:153.32MB | 文件类型:ZIP
【机器学习】菜菜的sklearn课堂(1-12全课).zip
配套的相关资料,好东西。
菜菜的课程,看了就知道是好东西了。
01决策树课件数据源码02随机森林03数据预处理和特征工程04主成分分析PCA与奇异值分解SVD05逻辑回归与评分卡06聚类算法Kmeans07支持向量机上08支持向量机下09回归大家族:线性回归,岭回归,Lasso与多项式回归010朴素贝叶斯011XGBoost 本软件ID:12359013

文件下载

资源详情

[{"title":"(79个子文件153.32MB)【机器学习】菜菜的sklearn课堂(1-12全课).zip","children":[{"title":"【机器学习】菜菜的sklearn课堂(1-12全课)","children":[{"title":"010朴素贝叶斯","children":[{"title":"010朴素贝叶斯.rar <span style='color:#111;'>4.13MB</span>","children":null,"spread":false},{"title":"NaiveBayes源码.ipynb <span style='color:#111;'>2.99MB</span>","children":null,"spread":false},{"title":"朴素贝叶斯fullversion.pdf <span style='color:#111;'>3.40MB</span>","children":null,"spread":false}],"spread":true},{"title":"09回归大家族:线性回归,岭回归,Lasso与多项式回归","children":[{"title":"线性回归-代码.ipynb <span style='color:#111;'>473.35KB</span>","children":null,"spread":false},{"title":"线性回归课件+代码.zip <span style='color:#111;'>4.92MB</span>","children":null,"spread":false},{"title":"线性回归大家族fullversion.pdf <span style='color:#111;'>4.98MB</span>","children":null,"spread":false}],"spread":true},{"title":"参考书1.jpg <span style='color:#111;'>100.77KB</span>","children":null,"spread":false},{"title":"02随机森林","children":[{"title":"Record.ipynb <span style='color:#111;'>242.04KB</span>","children":null,"spread":false},{"title":"test.csv <span style='color:#111;'>48.75MB</span>","children":null,"spread":false},{"title":"train.csv <span style='color:#111;'>73.22MB</span>","children":null,"spread":false},{"title":"digitrecognizor.zip <span style='color:#111;'>14.88MB</span>","children":null,"spread":false},{"title":"sample_submission.csv <span style='color:#111;'>235.26KB</span>","children":null,"spread":false},{"title":".ipynb_checkpoints","children":null,"spread":false},{"title":"随机森林fullversion.pdf <span style='color:#111;'>2.46MB</span>","children":null,"spread":false}],"spread":true},{"title":"03数据预处理和特征工程","children":[{"title":"数据预处理与特征工程fullversion.xml <span style='color:#111;'>19.11KB</span>","children":null,"spread":false},{"title":".ipynb_checkpoints","children":[{"title":"record-checkpoint.ipynb <span style='color:#111;'>132.92KB</span>","children":null,"spread":false}],"spread":true},{"title":"digitrecognizor.csv <span style='color:#111;'>73.22MB</span>","children":null,"spread":false},{"title":"数据预处理和特征工程-数据.zip <span style='color:#111;'>8.91MB</span>","children":null,"spread":false},{"title":"数据预处理与特征工程fullversion.pdf <span style='color:#111;'>2.58MB</span>","children":null,"spread":false},{"title":"record.ipynb <span style='color:#111;'>132.92KB</span>","children":null,"spread":false},{"title":"Narrativedata.csv <span style='color:#111;'>17.96KB</span>","children":null,"spread":false}],"spread":true},{"title":"开始机器学习之前:配置开发环境.pdf <span style='color:#111;'>1.64MB</span>","children":null,"spread":false},{"title":"08支持向量机下","children":[{"title":"SVM2-案例部分源码.ipynb <span style='color:#111;'>373.03KB</span>","children":null,"spread":false},{"title":"SVM(下)fullversion.xml <span style='color:#111;'>31.34KB</span>","children":null,"spread":false},{"title":"weather.csv <span style='color:#111;'>15.15MB</span>","children":null,"spread":false},{"title":"samplecity.csv <span style='color:#111;'>2.03KB</span>","children":null,"spread":false},{"title":"SVM(下)fullversion.pdf <span style='color:#111;'>3.33MB</span>","children":null,"spread":false},{"title":"cityll.csv <span style='color:#111;'>4.11KB</span>","children":null,"spread":false},{"title":"SVM数据.zip <span style='color:#111;'>4.24MB</span>","children":null,"spread":false},{"title":".ipynb_checkpoints","children":[{"title":"SVM2-理论部分源码-checkpoint.ipynb <span style='color:#111;'>661.53KB</span>","children":null,"spread":false}],"spread":false},{"title":"weatherAUS5000.csv <span style='color:#111;'>538.55KB</span>","children":null,"spread":false},{"title":"Cityclimate.csv <span style='color:#111;'>3.69KB</span>","children":null,"spread":false},{"title":"SVM2-理论部分源码.ipynb <span style='color:#111;'>661.53KB</span>","children":null,"spread":false},{"title":"SVM(下)-源码.zip <span style='color:#111;'>221.88KB</span>","children":null,"spread":false}],"spread":false},{"title":"参考书2.jpg <span style='color:#111;'>93.00KB</span>","children":null,"spread":false},{"title":"06聚类算法Kmeans","children":[{"title":"聚类算法与Kmeans.ipynb <span style='color:#111;'>3.39MB</span>","children":null,"spread":false},{"title":"聚类算法与Kmeans代码.zip <span style='color:#111;'>2.52MB</span>","children":null,"spread":false},{"title":".ipynb_checkpoints","children":[{"title":"聚类算法与Kmeans-checkpoint.ipynb <span style='color:#111;'>3.39MB</span>","children":null,"spread":false}],"spread":true},{"title":"聚类算法KMeansEDUversion.pdf <span style='color:#111;'>2.19MB</span>","children":null,"spread":false}],"spread":true},{"title":"01决策树课件数据源码","children":[{"title":"test.csv <span style='color:#111;'>27.96KB</span>","children":null,"spread":false},{"title":"决策树fullversion.pdf <span style='color:#111;'>3.31MB</span>","children":null,"spread":false},{"title":"Taitanicdata.zip <span style='color:#111;'>32.50KB</span>","children":null,"spread":false},{"title":"决策树原理更新.pdf <span style='color:#111;'>3.60MB</span>","children":null,"spread":false},{"title":"data.csv <span style='color:#111;'>59.76KB</span>","children":null,"spread":false},{"title":"Tree.dot <span style='color:#111;'>1.56KB</span>","children":null,"spread":false},{"title":".ipynb_checkpoints","children":[{"title":"决策树原理部分源码-checkpoint.ipynb <span style='color:#111;'>178.49KB</span>","children":null,"spread":false},{"title":"决策树案例部分源码-checkpoint.ipynb <span style='color:#111;'>35.42KB</span>","children":null,"spread":false}],"spread":false},{"title":"决策树原理部分源码.ipynb <span style='color:#111;'>178.49KB</span>","children":null,"spread":false},{"title":"Tree <span style='color:#111;'>2.03KB</span>","children":null,"spread":false},{"title":"Tree.pdf <span style='color:#111;'>28.30KB</span>","children":null,"spread":false},{"title":"决策树案例部分源码.ipynb <span style='color:#111;'>35.42KB</span>","children":null,"spread":false}],"spread":false},{"title":"参考书3.jpg <span style='color:#111;'>89.76KB</span>","children":null,"spread":false},{"title":"04主成分分析PCA与奇异值分解SVD","children":[{"title":"Record.ipynb <span style='color:#111;'>350.34KB</span>","children":null,"spread":false},{"title":"降维算法fullversion.pdf <span style='color:#111;'>2.71MB</span>","children":null,"spread":false},{"title":"record2.ipynb <span style='color:#111;'>92.53KB</span>","children":null,"spread":false},{"title":".ipynb_checkpoints","children":[{"title":"record2-checkpoint.ipynb <span style='color:#111;'>72B</span>","children":null,"spread":false},{"title":"Record-checkpoint.ipynb <span style='color:#111;'>350.34KB</span>","children":null,"spread":false}],"spread":false},{"title":"降维算法fullversion.xml <span style='color:#111;'>35.02KB</span>","children":null,"spread":false},{"title":"digitrecognizor.csv <span style='color:#111;'>73.22MB</span>","children":null,"spread":false}],"spread":true},{"title":"07支持向量机上","children":[{"title":"Record.ipynb <span style='color:#111;'>30.92KB</span>","children":null,"spread":false},{"title":"SVM(上)fullversion.pdf <span style='color:#111;'>7.72MB</span>","children":null,"spread":false},{"title":"SVM1.ipynb <span style='color:#111;'>1.23MB</span>","children":null,"spread":false},{"title":".ipynb_checkpoints","children":[{"title":"SVM1-checkpoint.ipynb <span style='color:#111;'>1.23MB</span>","children":null,"spread":false}],"spread":false},{"title":"SVM(上)fullversion.xml <span style='color:#111;'>21.32KB</span>","children":null,"spread":false}],"spread":true},{"title":"011XGBoost","children":[{"title":"XGBoostfullversion.pdf <span style='color:#111;'>5.31MB</span>","children":null,"spread":false},{"title":"xgboostcode.ipynb <span style='color:#111;'>611.80KB</span>","children":null,"spread":false},{"title":".ipynb_checkpoints","children":[{"title":"Untitled-checkpoint.ipynb <span style='color:#111;'>72B</span>","children":null,"spread":false},{"title":"xgboostcode-checkpoint.ipynb <span style='color:#111;'>611.49KB</span>","children":null,"spread":false}],"spread":false},{"title":"xgboost代码+课件.zip <span style='color:#111;'>5.36MB</span>","children":null,"spread":false}],"spread":true},{"title":"05逻辑回归与评分卡","children":[{"title":"逻辑回归fullversion.pdf <span style='color:#111;'>3.03MB</span>","children":null,"spread":false},{"title":"rankingcard.csv <span style='color:#111;'>7.21MB</span>","children":null,"spread":false},{"title":"vali_data.csv <span style='color:#111;'>8.77MB</span>","children":null,"spread":false},{"title":"ScoreData.csv <span style='color:#111;'>1.83KB</span>","children":null,"spread":false},{"title":"model_data.csv <span style='color:#111;'>20.54MB</span>","children":null,"spread":false},{"title":"评分卡模型.ipynb <span style='color:#111;'>265.60KB</span>","children":null,"spread":false},{"title":".ipynb_checkpoints","children":[{"title":"评分卡模型-checkpoint.ipynb <span style='color:#111;'>265.60KB</span>","children":null,"spread":false},{"title":"逻辑回归-checkpoint.ipynb <span style='color:#111;'>233.88KB</span>","children":null,"spread":false}],"spread":false},{"title":"逻辑回归.ipynb <span style='color:#111;'>55.08KB</span>","children":null,"spread":false},{"title":"逻辑回归fullversion.xml <span style='color:#111;'>31.19KB</span>","children":null,"spread":false},{"title":"逻辑回归课件+数据.zip <span style='color:#111;'>5.84MB</span>","children":null,"spread":false}],"spread":true}],"spread":false}],"spread":true}]

评论信息

  • tl_ztj:
    没有第12课。2020-05-05

免责申明

【好快吧下载】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【好快吧下载】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【好快吧下载】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,8686821#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明