本资源是推荐系统中最基本且最精但的协同过滤推荐算法实现,包括数据集,以及算法的评价指标MAE的计算,数据集采用MovieLens中两个数据集进行测试,需要别的数据集可以根据自己需要添加,只需修改Base.java文件中的配置即可,本程序配备一个readme文件,里面有程序的运行介绍,程序注释详细,希望对大家有帮助。
2024/8/26 5:29:53 551KB 协同过滤 推荐系统 推荐算法 java
1
准确了解用户对视频热度的选择(PP)的差异性对丰富的用户画像,提高个性化服务精确度和优化产品提供方收益等方面大有替代益。
目前只有少量的统计学方面的研究,在数据稀疏或者大规模启动的情况下不确定性的正确性。
基于大规模商业在线视频流媒体系统的用户观影数据,此处对用户的视频热度替换进行了多角度刻画分析,着重提出了两个基于协同过滤(CF)的算法来预测用户对视频热度的替代。
具体贡献如下:1)通过空模型假设对比实验,发现并非所有用户都偏好热度高的视频;
大多数用户有较广泛的优选范围,但用户之间2)设计了基于最近邻居的(NNI)和基于矩阵分解的(MFI)用户热度首选预测模型。
实验证明,当数据稀疏度低于48%的时候,用NNI或MFI算法初始化所得的用户热度替代比传统方法统计所得的结果更准确。
越稀疏的情况下,这种优势越明显。
此工作对视频系统中推荐服务设计和用户体验优化具有参考意义。
2024/8/10 16:42:34 224KB 研究论文
1
文件是基于物品的协同过滤算法itemCF原理及python代码实现,包含MovieLens数据集中的ml-100k数据集,开发环境是Python2.7.代码是我按照《推荐系统实践》里面的公式写的完整程序,并添加了中文注释。
2024/8/8 4:40:51 3.98MB 协同过滤 itemCF
1
基于物品的协同过滤算法实现图书推荐系统。
在当下这个信息爆炸的时代,各种各样的书籍条目繁多,浩如烟海;
相应地,为满足用户需求,电商平台需要推荐系统来帮助用户找到自己可能需要的书籍。
本文旨在利用基于物品的协同过滤算法,来实现一个图书推荐系统。
本文首先介绍了推荐系统的发展历史,及目前常用的几种推荐算法的介绍与比较,然后以基于物品的协同过滤算法为基础,详细介绍图书推荐系统的构建。
在该系统中,主要功能分为用户功能和图书推荐功能。
用户功能包括用户账号的登录与注册,书籍查询,书籍评分。
图书推荐功能利用基于物品的协同过滤算法,先计算各个书籍之间的相似度,再根据物品相似度和用户的行为数据计算用户对各个书籍的兴趣度,从而得出推荐结果。
2024/7/24 17:27:45 951KB 推荐系统
1
推荐系统,python的。
基于协同过滤算法。
我觉得还行。
没问题
2024/7/15 9:07:57 886KB python recommend system
1
关于协同过滤,FM的各种算法详细介绍。
协同过滤,简单来说是利用某兴趣相投、拥有共同经验之群体的喜好来推荐用户感兴趣的信息,个人透过合作的机制给予信息相当程度的回应并记录下来以达到过滤的目的进而帮助别人筛选信息,回应不一定局限于特别感兴趣的,特别不感兴趣信息的纪录也相当重要。
1
关于电影推荐算法的matlab代码实现,参考协同过滤算法过程,使用余弦相似度计算。
2024/7/4 5:28:38 2KB 推荐 matlab
1
该资源是基于物品的协同过滤算法,使用的是spark2.x环境,需要自己配置好环境,数据需要自己找,根据代码中的sql语句创建字段即可。
环境配置好可以直接运行
2024/6/8 7:51:25 1.19MB 推荐系统 spark 协同过滤 scala
1
大数据推荐算法之基于用户协同过滤推荐实例usercf,python版,用movielens数据作例子
2024/4/24 13:04:50 3KB 用户推荐 协同过滤算法
1
协同过滤推荐算法java实现,最简单的例子解释协同过滤算法,只要稍微有点基础的人都能看懂
2024/4/23 13:20:38 551KB 协同过滤 推荐
1
共 62 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡