研究了一个无损测量原子质心动量的精确可解模型,详细分析了无损测量的条件及无损测量的动力学过程。
文中分析表明,绝热极限是实现此类模型无损测量的必要条件。
最后针对此模型讨论了量子无损测量与表象之间的关系。
2024/8/8 14:07:58 1.07MB 量子无损 原子质心 绝热近似
1
Blender的安装后所占空间很少以及可以运行于不同的平台。
虽然它经常不连说明文档或范例发布,但其拥有极丰富的功能,而且很大部份是高端模组塑造软体。
其特性有:  支持不同的几何图元,包括多边形网纹,快速表层塑模,曲线及向量字元。
  多用途的内部洵染及整合YafRay这个开源的射线追踪套件。
  动画工具,包括了反向动作组件,可设定骨干,结构变形,关键影格,时间线,非线性动画,系统规定参数,顶点量重及柔化动量组件,包括网孔碰撞侦察和一个具有侦察碰察的粒子系统。
  使用Python语言来创作及制作游戏及工作自动化脚本。
  基本的非线性影像编辑及制作功能。
  Game_Blender,一个子计划,用以制作实时的电脑游戏。
2024/7/13 11:02:07 1.68MB blender
1
现代设备技术水平不断提高,生产率、自动化要求越来越高,相应地,故障也随之增加。
变压器作为电力系统中非常复杂而且非常重要的设备,其工作状态对电力系统、企事业单位生产及居民生活具有十分重要的影响。
如何提前对变压器故障进行预测和在故障发生后迅速判断故障原因是提高工作效率、减少经济损失的一个重要途径。
因此研究变压器故障诊断对保证系统安全、可靠、经济运行,提高经济效益具有重要意义。
本文针对传统故障诊断的若干弊病,提出了将神经网络用于变压器故障诊断系统。
传统的故障诊断方法大多是以领域专家和操作者的启发性经验知识为核心,知识获取困难、推理效率低下、自适应能力差,并且常见的诊断方法常常由于其单一性而存在一定的误差。
同时由于故障征兆和故障类型之间常常存在复杂的非线性关系,使得诊断系统的数学模型很难获取。
而人工神经网络以其分布式并行处理、自适应、自学习、联想记忆以及非线性映射等优点,为解决这一问题开辟了新途径。
鉴于此,在开发变压器故障诊断系统时,将神经网络作为故障分类器进行设计。
本文首先分析了故障诊断和神经网络的基本理论,并在此基础上提出了神经网络对于变压器故障诊断系统的适用性;文中将BP神经网络算法用计算机实现;并针对其本身存在的一些缺点提出了一系列改进措施,通过在修正权值的时候增加动量项,并且限制输入值范围来减小误差、提高系统的诊断正确率;在对输入数据进行归一化处理的时候,采取按类逐项归一化的方法,避免了输入数据出现0或者1而使训练进入平坦区。
这样可以大大提高系统的诊断效率和诊断正确率。
将变压器诊断中典型的油中气体分析法和神经网络方法相结合,采用Java语言开发出界面友好、性能优秀的变压器故障诊断系统;此外,文中还详细探讨了网络各结构参数的选择方法,并且就变压器这一实际诊断系统,分析了不同结构参数对系统误差的影响。
在文章的最后,总结了神经网络故障诊断系统的优秀性能以及它存在的不足,并且分析了未来神经网络用于故障诊断的前景和发展方向。
关键词故障诊断;
神经网;
BP算法;
变压器油中气体分析
2024/3/19 2:49:43 2.25MB 变压器
1
本文对仿真技术概念和制冷系统中仿真技术的发展进行简单介绍,并以毛细管为例,分析毛细管中制冷剂的流动过程,根据质量守恒、能量守恒和动量守恒原理,基于稳态模型的思想,建立绝热均相流毛细管数学模型,开发了仿真程序,并将计算结果与相关文献进行对比,两者基本吻合。
2024/2/13 9:44:55 13KB 制冷毛细管 matlab
1
通用自旋动量锁定光学力
2024/1/31 9:14:17 465KB JupyterNotebook
1
通过求解密度泛函理论中的含时科恩-沈(TDKS)方程,对Ne原子光电离过程进行了数值模拟,发现了在高强度极紫外(XUV)激光脉冲作用下的三重动量相关(TMC)现象。
计算结果显示了不同轨道电子具有不同电离特性,发现对于高强度XUV激光脉冲,Ne原子p轨道电子的电离主要发生在沿着轨道纵向的方向上。
通过计算各轨道电子的动量分量,发现轨道电子的平行动量相互关联,垂直动量也相互关联,但平行动量和垂直动量之间并不关联。
这些相互关联的关系可以由轨道形状、轨道朝向和激光偏振来解释。
模拟结果显示了内层轨道电子也可以发生显著电离现象。
1
里面有附加动量法反向传播网络训练程序,自适应学习及弹性bp算法等,适用于神经网络控制入门.
1
用动量梯度下降算法训练BP网络使用的主要函数如下:NEWFF——生成一个新的前向神经网络TRAIN——对BP神经网络进行训练SIM——对BP神经网络进行仿真
2023/10/4 2:54:19 890B matlab bp 动量梯度下降
1
第一章人工神经网络…………………………………………………3§1.1人工神经网络简介…………………………………………………………31.1人工神经网络的起源……………………………………………………31.2人工神经网络的特点及应用……………………………………………3§1.2人工神经网络的结构…………………………………………………42.1神经元及其特性…………………………………………………………52.2神经网络的基本类型………………………………………………62.2.1人工神经网络的基本特性……………………………………62.2.2人工神经网络的基本结构……………………………………62.2.3人工神经网络的主要学习算法………………………………7§1.3人工神经网络的典型模型………………………………………………73.1Hopfield网络…………………………………………………………73.2反向传播(BP)网络……………………………………………………83.3Kohonen网络…………………………………………………………83.4自适应共振理论(ART)……………………………………………………93.5学习矢量量化(LVQ)网络…………………………………………11§1.4多层前馈神经网络(BP)模型…………………………………………124.1BP网络模型特点 ……………………………………………………124.2BP网络学习算法………………………………………………………134.2.1信息的正向传递………………………………………………134.2.2利用梯度下降法求权值变化及误差的反向传播………………144.3网络的训练过程………………………………………………………154.4BP算法的改进………………………………………………………154.4.1附加动量法………………………………………………………154.4.2自适应学习速率…………………………………………………164.4.3动量-自适应学习速率调整算法………………………………174.5网络的设计………………………………………………………………174.5.1网络的层数…………………………………………………174.5.2隐含层的神经元数……………………………………………174.5.3初始权值的选取………………………………………………174.5.4学习速率…………………………………………………………17§1.5软件的实现………………………………………………………………18第二章遗传算法………………………………………………………19§2.1遗传算法简介………………………………………………………………19§2.2遗传算法的特点…………………………………………………………19§2.3遗传算法的操作程序………………………………………………………20§2.4遗传算法的设计……………………………………………………………20第三章基于神经网络的水布垭面板堆石坝变形控制与预测§3.1概述…………………………………………………………………………23§3.2样本的选取………………………………………………………………24§3.3神经网络结构的确定………………………………………………………25§3.4样本的预处理与网络的训练……………………………………………254.1样本的预处理………………………………………………………254.2网络的训练……………………………………………………26§3.5水布垭面板堆石坝垂直压缩模量的控制与变形的预测…………………305.1面板堆石坝堆石体垂直压缩模量的控制……………………………305.2水布垭面板堆石坝变形的预测……………………………………355.3BP网络与COPEL公司及国内的经验公式的预测结果比较…35§3.6结论与建议………………………………………………………………38第四章BP网络与遗传算法在面板堆石坝设计参数控制中的应用§4.1概述………………………………………………………………………39§4.2遗传算法的程序设计与计算………………………………………………39§4.3结论与建议…………………………………………………………………40参考文献…………………………………………………………………………
2023/8/2 9:24:30 1.66MB 人工神经网络
1
本文件功能:用BP神经网络预测温湿度。
本次仿真,预测模型为8*8*8*1,输入数据为359天数据(一个小时测一个数据,一天数据为24)。
其中350天数据做训练样本,用来训练BP网络模型的权值和阈值,4天用来做测试样本,用来测试3天左右的温湿度预测值。
本次训练效果比较上次仿真较为准确,判定系数可以达到0.8左右(越靠近1表明仿真效果越好),预测值与实际值点状图基本围绕在主对角线左右,MSE平方误差可以达到0.01,BP网络预测输出图也可以看出预测值的变化趋势基本与期望值一致。
本次仿真存在不足:1.未修改学习率、附加动量等参量没有解决BP网络收敛慢的问题。
2.没有使用全局优化的算法,没有解决BP容易陷入极值点的问题。
这种用BP网络来进行预测的模型网上有很多,但是大多数都是预测风力发电等,可能也是因为该BP模型是40年代所提出,我是没有找到有温湿度的预测,该代码纯属自己改写的,并且运行无误,现在分享出来,让大家节省一些时间去研究更有深度的算法。
2023/8/2 9:25:48 2.28MB BP神经网络  温湿度预测
1
共 33 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡