分数阶PID的simulink模型实现,直接运行simulink模型即可,还有mask里面初始化的函数代码在主页
2024/8/10 9:41:52 44KB 分数阶PID
1
matlab开发-分步序达尔文粒子群优化。
fdpso的matlab函数(分数阶达尔文粒子群优化)
2024/7/4 3:16:19 5KB 未分类
1
利用分数阶傅里叶变换的方法,通过迭代相位将加密图像替换为所需要的相位达到加密效果,上传压缩包包括代码和图片,不需要任何修改即可运行。
2024/6/29 11:19:42 226KB matlab 图像加密
1
计算分数阶微分方程非常有效且准确的计算程序,并包含示例使用说明。
2024/5/30 12:55:21 247KB 分数微积分
1
对于如何使用前面的程序的一个说明,如果不太会使用的朋友,可以看看
2024/4/17 12:08:32 452KB MATLAB 分数阶 控制 PID
1
MATLAB工具箱大全-分数阶傅里叶变换的程序FRFT
1
%Time-FrequencyToolbox.%Version1.0January1996%Copyright(c)1994-96byCNRS(France)-RICEUniversity(USA).%%SignalGenerationFiles%%sigmerge-AddtwosignalswithgivenenergyratioindB.%%ChoiceoftheInstantaneousAmplitude%amexpo1s-Generateone-sidedexponentialamplitudemodulation.%amexpo2s-Generatebilateralexponentialamplitudemodulation.%amgauss-Generategaussianamplitudemodulation.%amrect-Generaterectangularamplitudemodulation.%amtriang-Generatetriangularamplitudemodulation.%%ChoiceoftheInstantaneousFrequency%fmconst-Signalwithconstantfrequencymodulation.%fmhyp-Signalwithhyperbolicfrequencymodulation.%fmlin-Signalwithlinearfrequencymodulation.%fmodany-Signalwitharbitraryfrequencymodulation.%fmpar-Signalwithparabolicfrequencymodulation.%fmpower-Signalwithpower-lawfrequencymodulation.%fmsin-Signalwithsinusoidalfrequencymodulation.%gdpower-Signalwithapower-lawgroupdelay.%%ChoiceofParticularSignals%altes-Altessignalintimedomain.%anaask-AmplitudeShiftKeyed(ASK)signal.%anabpsk-BinaryPhaseShiftKeyed(BPSK)signal.%anafsk-FrequencyShiftKeyed(FSK)signal.%anapulse-Analyticprojectionofunitamplitudeimpulsesignal.%anaqpsk-QuaternaryPhaseShiftKeyed(QPSK)signal.%anasing-Lipschitzsingularity.%anastep-Analyticprojectionofunitstepsignal.%atoms-LinearcombinationofelementaryGaussianwavepackets.%dopnoise-GeneratecomplexDopplerrandomsignal.%doppler-GeneratecomplexDopplersignal.%klauder-Klauderwaveletintimedomain.%mexhat-Mexicanhatwaveletintimedomain.%tftb_window-Windowgeneration(previouslywindow.m).%%AdditionofNoise%noisecg-Analyticcomplexgaussiannoise.%noisecu-Analyticcomplexuniformnoise.%%Modification%s
2024/2/8 14:54:52 17KB matlab FRFT 分数阶 分数阶傅里叶
1
根据Ozaktas1996年的文章《DigitalComputationoftheFractionalFourierTransform》编写的分数阶傅里叶变换程序。
2024/1/20 4:28:50 2KB FrFT Matlab
1
压缩包中包含原图和水印图片,可以使用,只是不知道是不是参数调整有问题,效果不是太好
2023/12/26 3:27:09 161KB matlab 盲水印检测 分数阶 傅里叶变换
1
前言第1章概述1.1宽带无线移动通信系统的发展1.2功率放大器线性化技术简介1.2.1国内外研究现状1.2.2本书的创新性工作1.3本书结构安排第2章功率放大器数学模型2.1功率放大器非线性效应分析2.2非线性效应基带等效分析2.3无记忆功率放大器典型模型2.3.1Saleh模型2.3.2Rapp模型2.3.3多项式模型2.4宽带功率放大器记忆效应分析2.5有记忆功率放大器模型2.5.1Volterra模型2.5.2多项式模型2.5.3Wiener模型2.5.4Hammerstein模型2.5.5并行Hammerstein模型2.5.6神经网络模型2.6本章小结第3章功率放大器非线性对传输信号的影响3.1非线性的时域及频域分析3.1.1谐波失真3.1.2互调失真3.1.3交调失真3.1.4AM/AM和AM/PM畸变3.2功率放大器非线性对多载波信号功率谱的影响3.2.1无记忆模型功率谱的解析表达3.2.2有记忆模型功率谱的解析表达3.2.3仿真及分析3.3功率放大器非线性对多载波信号符号率的影响3.3.1误符号率的解析表达3.3.2仿真及分析3.4功率放大器非线性评价指标3.4.1分贝压缩点功率3.4.2三阶互调系数3.4.3三阶截断点3.4.4交调系数3.4.5输入及输出回退3.4.6系统性能总损耗3.5本章小结第4章宽带功率放大器预失真技术简介4.1数字预失真技术综述4.2预失真技术基本原理4.3非自适应性预失真技术4.3.1方案概述4.3.2特性曲线的测量4.4射频自适应预失真技术4.5中频自适应预失真技术4.6基带自适应数字预失真技术4.7本章小结第5章宽带功率放大器预失真估计结构5.1直接学习结构5.2间接学习结构5.2.1基于IDLA的新算法5.2.2仿真及分析5.3本章小结第6章基于查询表的数字预失真6.1查询表预失真方法综述6.1.1查询表形式6.1.2查询表的指针方式6.1.3查询表地址索引方式6.1.4查询表自适应算法6.1.5查询表预失真方法的不足6.2无记忆查询表预失真方法6.2.1常规查询表预失真算法6.2.2改进的查询表预失真方法6.3有记忆查询表预失真方法6.3.1一维查询表预失真方法6.3.2二维查询表预失真方法6.4本章小结第7章基于多项式的数字预失真7.1多项式预失真方法综述7.1.1多项式模型7.1.2多项式自适应算法7.1.3多项式预失真方法的不足7.2多项式形式的选择7.2.1预失真多项式形式7.2.2正交多项式模型7.3无记忆多项式预失真方法7.3.1分段无记忆多项式预失真方法7.3.2直接学习结构递推系数估计方法7.3.3间接学习结构系数估计方法7.3.4正交多项式预失真方法7.3.5动态系数多项式预失真方法7.4有记忆多项式预失真方法7.4.1分段有记忆多项式预失真方法7.4.2归一化最小均方系数估计方法7.4.3广义归一化梯度下降系数估计方法7.4.4广义记忆多项式预失真方法7.4.5分数阶记忆多项式预失真方法7.4.6Hammerstein预失真方法7.5本章小结第8章宽带功率放大器预失真方案设计8.1数字预失真系统设计8.2反馈环路延迟估计8.2.1常规环路延迟估计方法8.2.2提出的环路延迟估计方法8.2.3仿真分析8.3PAPR降低技术与预失真8.3.1问题引出8.3.2PAPR降低技术8.3.3限幅对OFDM信号预失真性能的影响8.3.4PAPR降低技术与PA线性化的内在联系8.4宽带功率放大器的有效阶估计8.5关于硬件实现8.5.1非自适应预失真硬件实现8.5.2自适应数字预失真硬件实现8.6宽带功率放大器预失真新理论与技术8.6.1功率放大器预失真新理论8.6.2功率放大器预失真新技术8.7本章小结参考文献附录A符号表附录B缩略语
2023/12/19 1:19:29 18.5MB 预失真
1
共 47 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡