YOLO为一种新的目标检测方法,该方法的特点是实现快速检测的同时还达到较高的准确率,很详细的介绍
2025/4/18 0:13:37 5.07MB YOLO 人工智能 算法
1
kdd2015年竞赛代码全公开,预测慕课辍学率,准确率达到了接近95%。
2025/4/10 21:54:02 56.18MB kdd2015
1
基于VIBE的运动目标检测,其根据随机采样原理进行背景建模,检测速度快,准确率高。
2025/4/9 15:26:48 4KB VIBE 运动目标检测 背景建模
1
编程环境:Anaconda中的notebook;
利用三层神经网络实现MNIST数据库(CSV格式)的手写字符识别;
并且计算出识别的准确率
2025/3/20 5:11:19 7KB 神经网络 Python 数字识别
1
resnet50_weights_tf_dim_ordering_tf_kernels_notop.h5速度快,准确率高,参数不多50层残差网络模型,权重训练自ImageNet该模型在Theano和TensorFlow后端均可使用,并接受channels_first和channels_last两种输入维度顺序模型的默认输入尺寸:224x224
2025/3/13 0:22:32 90.27MB resnet50 notop tf weights
1
KNN分类算法的C++实现,采用交叉验证测试在公共数据集上的准确率。
希望对大家有帮助,如果发现程序中的问题请给我留言,相互借鉴,共同进步。
2025/2/23 2:03:23 1.83MB KNN分类
1
李飞飞的imagenet数据库下构建的AlexNet代码,可以实现针对任意图片的准确率判别和目标的检测
2025/1/31 3:06:21 5KB imagenet AlexNet
1
此资源为心电比赛的数据与代码,有1000个数据,每个10s。
代码为心电信号的二分类,最终准确率为0.8100。
此资源为网络搜索,仅供大家学习参考,切勿用于其他用途!
2025/1/30 16:31:25 159.69MB 心电 CNN
1
分析了支持向量机(supportvectormachine,SVM)目前主要存在的问题和参数选择对分类性能的影响后,提出了以改进粒子群算法优化SVM关键参数的优化SVM算法。
将加入拥挤度因子的微粒群算法引入到SVM中,在不牺牲泛化性能的前提下,对其参数进行优化,增加了SVM初始化参数的多样性,减慢了局部搜索,促进其在全局范围内的寻优搜索,以有效克服SVM算法过分依赖初始值和容易陷入局部极小值的缺点,并利用由粗到精的策略构造多层SVM人脸表情分类器,在提高准确率的基础上加快分类的速度。
实验证明,新算法具有速度快、准确率高的优点。
1
基于贝叶斯及KNN算法的newsgroup文本分类器,eclipse工程程序运行方法:用eclipse打开工程,并将newsgroup文档集解压到F:\DataMiningSample\orginSample目录下,同时在F:\DataMiningSample\下建好如附件“F盘DataMiningSample目录下的数据子目录结构”图中的目录,停用词表也放在"F:/DataMiningSample/目录下,即可运行eclipse工程。
程序会依次执行数据预处理、贝叶斯分类、KNN分类,输出10次交叉验证实验的分类结果、准确率统计及混淆矩阵。
1
共 131 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡