通过opencv对图片上的数字进行识别。
识别方式和步骤主要是寻找出数字的外轮廓,然后根据轮廓外接矩阵对数字进行分割,然后根据模板,求出其与分割好的数字的像素差值,找出最匹配的数字。
2025/10/19 0:48:08 26.05MB opencv 数字识别
1
在IT领域,尤其是在嵌入式系统、汉字处理与显示技术中,HZK16是一种非常重要的资源,它包含了汉字的点阵数据,用于在字符显示器上显示汉字。
点阵数据是指由一系列点(像素)组成的图像信息,对于汉字而言,这些点阵数据能够构成特定的汉字形状。
HZK16中的汉字点阵数据是以16x16的格式存储的,每个汉字占用16行,每行有16个像素点。
在给定的文件信息中,标题“HZK16C语言数据”表明这份资料是关于HZK16汉字点阵数据在C语言中的表示方式。
C语言是一种广泛使用的编程语言,尤其适用于系统级编程和嵌入式开发。
将HZK16的点阵数据以C语言的格式编写,意味着这些数据可以直接被C程序引用,用于汉字的显示或处理。
描述部分提到“从HZK16中提取的汉字点阵数据”,这暗示了这份数据是从一个更大的HZK16字体库中抽取出来的。
这样的字体库通常包含数千个汉字的点阵数据,每个汉字都对应着一组特定的二进制值,这些值在C语言中表示为十六进制数,如代码片段所示:“constunsignedGB2312_HZK_1[94][32]={...}”。
这里定义了一个二维数组,数组名为GB2312_HZK_1,大小为94行,每行32个元素,每个元素都是一个十六进制数,代表汉字点阵的一个像素点状态。
例如,第一个汉字的第一行数据为:{0X00,0X00,...,0X00},表示这一行所有像素点都是空白的。
代码示例中的部分数据展示了汉字点阵的具体结构。
例如,第六个汉字的前几行数据为:```{0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X0C,0X18,0X1E,0X3C,0X1E,0X3C,0X0C,0X18,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00},```这组数据中,前十个元素为0X00,意味着这部分是空白的;
随后的八个元素逐渐变化,通过不同的十六进制数值来表示不同的像素点状态,最终构成了这个汉字的形状。
这种将汉字点阵数据以C语言格式编写的实践,在嵌入式系统、移动设备、电子书阅读器等硬件平台中十分常见,因为它们往往需要在有限的屏幕空间内高效地显示汉字。
通过预先定义好的点阵数据,可以快速准确地绘制出汉字,提高系统的响应速度和显示质量。
HZK16C语言数据的提取与使用,不仅体现了汉字编码与点阵数据的结合,还展现了C语言在处理这类复杂数据结构时的强大能力。
这对于从事汉字处理、嵌入式系统设计以及相关软件开发的工程师来说,是一份宝贵的学习资源和实践指南。
2025/10/17 14:57:22 1.27MB HZK16 点阵数据
1
TransferringDeepConvolutionalNeuralNetworksfortheSceneClassificationofHigh-ResolutionRemo所用数据源WHU-RSDataset.从GoogleEarth(GoogleInc.)收集的WHU-RS数据集[6]是一个新的公开可用的数据集,其包含大小为600×600像素的950幅图像,均匀分布在19个场景类中。
2025/10/11 18:35:53 99.86MB 数据集
1
为解决多通道光谱图像数据成像过程中更换滤光片造成的几何畸变问题,研究了一种基于快速稳健特征(SURF)与最大子矩阵的多通道光谱图像配准方法。
利用SURF算法提取了多通道光谱图像的特征,经过透视变换得到初步配准图像。
针对配准后图像边缘出现零像素值无效区域的问题,提出了通过最大子矩阵检测图像中最大内接矩形的方法,去掉了无效边缘区域,最大化地保留了有效区域信息。
对壁画的多通道成像数据进行了实验。
结果表明,所提方法在图像尺度与亮度变化方面具有更好的稳健性,能够避免其他配准方法中无效区域对后续光谱重建与颜色复原的影响,在配准精度、信息最大化保留、时间效率方面也具有更好的性能。
2025/10/5 11:42:46 10.91MB 光谱学 几何畸变 图像配准 光谱图像
1
需要中英文像素字体的朋友,这个数据包比较全面(解压密码:www.epinv.com)
2025/10/5 10:51:50 10.59MB 像素 字体
1
标题中的“何凯明去雾算法matalab源代码,可直接运行”指的是采用何凯明博士提出的图像去雾算法,并且提供了相应的Matlab实现,可以直接运行。
何凯明是计算机视觉领域的知名专家,他的去雾算法在图像处理中具有重要地位,常用于改善因大气散射导致的图像模糊问题。
在图像处理中,去雾算法是一种恢复图像清晰度的技术,尤其对于户外拍摄或低能见度条件下的照片尤为关键。
何凯明的去雾算法主要基于物理模型,假设大气层对光的散射可以用一个全局的透射率(transmissionmap)来描述。
这个算法通过分析图像的暗通道特性,估计透射率,并结合全局和局部信息来恢复图像的清晰度。
描述中提到“何凯明博士的图像去雾算法源代码,经调试可直接运行处理模糊图片”,这意味着你将获得一份已经过调试、可以直接在Matlab环境中运行的代码。
这对于学习和研究图像处理技术的人员来说是非常有价值的资源。
你可以直接使用这些代码来处理你的模糊图片,无需从零开始编写算法。
在Matlab中实现图像去雾算法,通常会涉及到以下几个关键步骤:1.**暗通道预处理**:找到图像中最暗的部分,这部分通常是由于雾的影响造成的,可以用来估计大气散射。
2.**透射率估计**:根据暗通道特性,估算出图像中每个像素点的透射率。
3.**大气光计算**:分析图像全局亮度来估计大气光,这是影响图像去雾效果的关键因素。
4.**恢复清晰图像**:利用透射率和大气光信息,通过物理模型对图像进行反卷积,恢复清晰图像。
标签“图像去雾算法”明确了这个压缩包的主要内容是关于图像去雾的算法实现。
文件名称“cvpr09defog(matlab)”可能表明这个算法是在2009年的计算机视觉与模式识别会议(CVPR)上发表的,而“defog”直接对应了去雾这一功能,表示这是用于去雾的代码。
这个资源对于学习图像处理,尤其是对去雾算法感兴趣的开发者或研究人员非常有帮助。
通过研究和实践这个源代码,不仅可以深入了解何凯明的去雾算法,还可以提升在Matlab中的编程能力,为自己的项目或研究提供强大的工具支持。
2025/9/28 13:24:28 226KB 图像去雾
1
这是我用来驱动MIPI屏的初始化参数,屏的尺寸为854*480像素,目前网上关于ST7701s驱动芯片的资料特别少,这个初始化参数亲测可用
2025/9/24 4:18:32 4KB LINUX MIPI DSI
1
本代码算法用于脉冲噪声、椒盐噪声等检测阶段的噪声或干净像素点正确检测率,误检率等评价标准的算法,基于matlab实现,附有代码注释。
1
STM32f103驱动TFT彩屏播放badapple,用文件系统读SD卡中的bin文件,然后将像素点信息写到TFT彩屏上
2025/8/8 22:22:23 7.24MB stm32 bad apple TFT彩屏
1
边缘检测是数字图像处理中的一个基础且重要的概念,它用于识别图像中的边界,这些边界通常对应于物体的轮廓。
在硬件实现中,如使用VERILOG这种硬件描述语言(HDL),可以创建高效的边缘检测电路,这对于嵌入式系统、计算机视觉应用以及实时图像处理非常有用。
VERILOG是一种广泛使用的HDL,它允许工程师用类似于编程的语言来描述数字系统的逻辑功能。
通过VERILOG编写的代码可以在FPGA(现场可编程门阵列)或ASIC(应用专用集成电路)上实现,以硬件的形式执行特定的算法,如边缘检测。
边缘检测通常涉及一系计算图像像素的差分或梯度。
其中,最经典的算法之一是Sobel算子,它利用水平和垂直方向的一组滤波器对图像进行卷积,以找出强度变化的区域。
在VERILOG中实现Sobel算子,我们需要定义滤波器系数,并编写逻辑来计算像素邻域内的差分。
以下是可能的VERILOG代码结构:1.**模块定义**:定义一个名为“edge_detector”的模块,输入为原始图像的像素数据,输出为边缘检测后的结果。
可能还需要控制信号,如时钟和使能信号。
```verilogmoduleedge_detector(input[PIXEL_WIDTH-1:0]img_in,//输入图像像素outputreg[PIXEL_WIDTH-1:0]edge_out,//输出边缘像素inputclk,//时钟inputrst//重置信号);```2.**内部变量**:声明用于存储滤波器权重和中间结果的变量。
```verilogreg[PIXEL_WIDTH-1:0]horz_weight,vert_weight;//滤波器权重reg[PIXEL_WIDTH-1:0]horz_diff,vert_diff;//水平和垂直差分```3.**滤波器定义**:定义Sobel算子的水平和垂直滤波器权重。
```verilogparameterSOBEL_X={};//水平滤波器权重parameterSOBEL_Y={};//垂直滤波器权重```4.**计算差分**:在时钟的上升沿,对图像进行卷积并计算差分。
```verilogalways@(posedgeclk)beginif(!rst)beginedge_outTHRESHOLD)edge_out<='1;//达到阈值则认为是边缘,否则设为0end```6.**结束模块定义**:关闭模块。
```verilogendmodule```这个模块可以被综合到FPGA硬件中,实现高速、低延迟的边缘检测。
在实际应用中,可能还需要考虑图像的滚动缓冲、多级缓存和并行处理以提高效率。
VERILOG实现的边缘检测不仅涉及到图像处理的基本概念,还涵盖了数字逻辑设计、并行处理和实时系统设计等多个领域。
理解和实现这样的系统有助于提升硬件设计者在数字信号处理和嵌入式系统设计方面的技能。
2025/8/4 9:34:58 2.93MB verilog
1
共 462 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡