ViraceGPSSimulator(以下简称为Virace)用软件模拟GPS接收器输出的GPS语句,通过串行口输出到GPS应用软件。
用鼠标或键盘控制Virace而模拟实际GPS接收器的运动,或者重播已有的GPS航迹文件,从而在室内测试GPS导航软件等。
Virace具有手动实时控制及航迹重播两种方式。
为了控制灵活方便,Virace定义了许多鼠标及键盘动作。
经过少许试用,就可以对照一个大比例尺的导航地图以超过正常驾车速度行驶在市区及郊区路上。
2023/12/15 15:46:47 693KB 软件模拟GPS接收器输出的GPS语
1
目录诸论第1章TMS320C54x的结构原理1.1TMS320系列DSP芯片概述101.1.1TMS320系列DSP的分类及应用101.1.2TMS320C5000DSP平台111.2TMS320C54xDSP131.2.1TMS320C54x的主要特性131.2.2TMS320C54x的组成框图161.3总线结构181.4存储器191.4.1存储器空间分配201.4.2程序存储器231.4.3数据存储器241.5中央处理单元271.5.1算术逻辑运算单元281.5.2累加器A和B291.5.3桶形移位器311.5.4乘法器/加法器单元321.5.5比较、选择和存储单元331.5.6指数编码器341.5.7CPU状态和控制寄存器341.6数据寻址方式391.6.1立即寻址411.6.2绝对寻址411.6.3累加器寻址411.6.4直接寻址421.6.5间接寻址431.6.6存储器映像寄存器寻址461.6.7堆栈寻址471.7程序存储器地址生成方式481.7.1程序计数器491.7.2分支转移491.7.3调用与返回501.7.4条件操作511.7.5重复操作531.7.6复位操作541.7.7中断551.7.8省电方式591.8流水线601.8.1流水线操作601.8.2延迟分支转移621.8.3条件执行641.8.4双寻址存储器与流水线651.8.5单寻址存储器与流水线671.8.6流水线冲突和插入等待周期671.9在片外围电路711.9.1并行I/O口及通用I/O引脚711.9.2定时器721.9.3时钟发生器741.9.4主机接口781.10串行口831.10.1串行口概述831.10.2标准串行口841.11DMA控制器971.11.1DMA控制器的基本特性971.11.2子地址寻址方式971.11.3DMA通道优先级和使能控制寄存器1001.11.4DMA通道现场寄存器1021.11.5DMA编程举例1081.12外部总线1131.12.1外部总线接口1131.12.2外部总线操作的优先级别1141.12.3等待状态发生器1151.12.4分区切换逻辑1171.12.5外部总线接口定时图1181.12.6复位和IDLE3省电工作方式1201.13TMS320C54x引脚信号说明122第2章指令系统2.1指令的表示方法1302.1.1指令系统中的符号和略语1302.1.2指令系统中的记号和运算符1332.2指令系统1352.2.1指令系统概述1352.2.2指令系统分类135第3章汇编语言程序开发工具3.1TMS320C54x软件开发过程1373.2汇编语言程序的编写方法1393.3汇编语言程序的编辑、汇编和链接过程1413.4COFF的一般概念1433.4.1COFF文件中的段1433.4.2汇编器对段的处理1443.4.3链接器对段的处理1463.4.4COFF文件中的符号1483.5汇编1493.5.1运行汇编程序1493.5.2列表文件1513.5.3汇编命令1543.5.4宏定义和宏调用1543.6链接1563.6.1运行链接程序1563.6.2链接器选项1573.6.3链接器命令文件1583.6.4多个文件的链接164第4章Simulator和CCS集成开发工具的使用方法4.1Simulator的使用方法1694.1.1软件仿真器概述1694.1.2仿真命令1714.1.3仿真器初始化命令文件1744.1.4仿真外部中断1764.2什么是CCS1774.3如何安装和设置CCS1784.3.1CCS对计算机系统的配置要求1784.3.2CCS的安装与设置1784.4CCS窗口介绍1804.4.1CCS窗口示例1804.4.2CCS的菜单栏和快捷菜单1804.4.3CCS的常用工具栏1814.5如何建立工程文件1824.5.1工程文件的建立、打开和关闭1834.5.2在工程文件中添加或删除文件1834.5.3编辑源文件1834.5.4工程的构建1844.6如何调试程序1854.6.1加载可执行文件1854.6.2程序的运行和复位1864.6.3断点设置1874.6.4内存、寄存器和变量操作1884.7如何与外部文件交换数据1914.7
2023/8/25 15:41:47 3.6MB DSP结构 原理 TMS320C54X
1
本文是关于52单片机定时器计数器2做为串行口波特率发生器使用的例子,类似于定时器1作为波特率发生器工作在模式1下,但是不同的是:定时器2作为波特率发生器是16位自动重装的,位数比定时器1作为波特率发生器要高(定时器1作为串口波特率发生器是8位自动重装的),所以可以支持更高的传输速度,性能也比定时器1要好。
程序在Keil2和Keil3下调试通过,下载在实验板上达到预期效果。
AT89C52及其以上、AT89S52及其以上、STC89C52及其以上测试正常运行。
1
含有全部工程文件,使用C++Builder6.0完成开发,可重新编译运行。
创作权归曹润泽所有,使用者不可用于商业目的,否者后果自负。
本软件功能:上层的应用软件的模块主要有:初始化模块、用户设置模块、COM串行通信数据采集模块、数据矫正模块、数据绘图模块、数据存储模块、网络传输模块、功能整合模块等。
其中网络传输模块又可以根据工作模式分为服务端网络传输模块和客户端网络传输模块。
用户设置模块:主要是通过用户设置设置窗口中的信息来完成软件的设置,这些可以设置的变量都非常重要,包括基本设置:采样频率设置、COM端口选择、警告限设置(是否使用警戒限、高警戒限的大小、低警戒限的大小)、矫正表设置(是否使用矫正表、选择矫正表);
绘图设置:显示点数设置、曲线宽度设置、曲线颜色设置(高警戒曲线的颜色、正常时曲线颜色、低警戒曲线的颜色设置);
网络设置:是否使用网络传输、网络基本设置(服务端选择、客户端选择、端口号设置、服务端IP设置)。
COM串行通信数据采集模块:用于从串行口中读取数据。
本系统使用专门用于RS-232串行通信通信控制的控件TComm控件来完成COM通信。
数据矫正模块,顾名思义,是用于对数据进行矫正的。
若需要矫正数据,必须使用矫正表,矫正表实际上只是个用户可自定义的文本文件,但在编写矫正表文件时必须按照一定规则进行编写。
数据绘图模块:对于采集数据的实时绘图是通过BorlandC++Builder6.0自带的功能强大的TChart控件来实现。
数据存储模块:该模块除了使用了编译器所提供的几个基本数据类型之外,基本上是使用纯C++编写(不使用编译器的控件)。
数据存储并未使用数据库存储,而是使用文本文件的方式对所有采集到的时间进行存储,存储时要先把采样信息写入到数据文件的头部,包括创建时间、采样起始时间、采样持续时间、采样结束时间、采样频率、采样数等等信息,之后就是所采集的数据,采样数据包括数值和采集的该点所对应的时间,以及该点是否被警告(过低用!Low表示、正常用-表示、过高用!High表示)。
网络传输模块:网络传输模块是本数据采集系统比较新颖的模块,可以使用互联网进行速率较低的数据传输,考虑到网络传输的延迟,故设计时设置的采样速率比较低。
网络传输模块实际上是使用Socket编程实现的,在BorlandC++Builder中有封装好的用于网络通信的控件:TServerSocket和TClientSocket。
2023/6/10 21:49:40 2.62MB 数据采集 串行通信 C++ Builder
1
Q系列串行口通信模块用户参考手册QJ71C24N(基础篇).pdf
2023/6/8 15:10:32 12.78MB 1
1
哈尔滨产业大学mcs-51单片机课件  第1章单片机概述  第2章MCS-51单片机的硬件结构  第3章MCS-51的指令体系  第4章MCS-51汇编语言法度圭表标准方案  第5章MCS-51的中断体系  第6章MCS-51的按时器计数器  第7章MCS-51的串行口  第8章MCS-51单片机扩展存储器的方案  第9章MCS-51扩展IO接口的方案  第10章MCS-51与键盘、展现器、拨盘、打印机的接口方案  第11章MCS-51与DA转换器、AD转换器的口  第12章MCS-51的功率接口方案  第13章MCS-51的串行通讯本领及另外扩展接口  第14章单片机体系牢靠性方案与抗干扰方案  第15章MCS-51单片机使用体系的方案、开拓与调试。
2023/4/21 0:57:15 12.98MB 单片机 哈工大 经典
1
改善的基于INTERNET的ID餐饮免费体系,王秋华,章坚武,本文在原有的ID餐饮免费体系的底子上提出了ID餐饮体系效率器的不雅点方式,行使单片机、串行口、收集抑制芯片松散Internet本领实现基于
2023/4/14 0:48:05 283KB 首发论文
1
单片机指纹识别系统的实现毕业设计(89s52单片机)毕业设计1 绪论21.1指纹识别的历史与发展前景21.2指纹识别中的基本概念与技术困难21.3系统总体设计方案和论文结构32 纹图像处理及特征提取与实现52.1方法概述52.2方向图的计算62.2.1求点方向图62.2.2由点方向图求块方向图的算法62.2.3最小均方估计块方向算法72.3指纹图像的滤波82.4基于方向图的动态阀值指纹图像二值化方法102.5指纹图像的细化算法122.6特征提取及其后处理142.6.1特征点的提取142.6.2假特征点的去除142.6.3.细节点信息的提取及记录152.6.4指纹识别中细节点的匹配163指纹识别系统的硬件设计183.1功能描述183.2系统硬件结构概述183.3 AT89S51单片机的结构与特点193.4指纹识别系统硬件电路设计203.5电源电路的设计213.6指纹采集器引见及工作方式223.7单片机和PC机的通讯功能234.指纹识别系统软件设计264.1算法的软件实现264.2指纹识别系统软件的编制264.3指纹传感器初始化设置274.4指纹识别系统串口通信284.4.189S51串行口工作方式284.4.2PC机主程序(函数)324.4.3单片机图像处理设计33致谢35参考文献36
2023/3/10 11:51:50 1.59MB 指纹识别系统 89s52单片机
1
PIC16F151X和PIC16LF151X器件:高功能RISCCPU:•优化的C编译器架构•仅需学习49条指令•可寻址最大28KB的线性程序存储空间•可寻址最大1024字节的线性数据存储空间•工作速度:-DC–20MHz时钟输入(2.5V时)-DC–16MHz时钟输入(1.8V时)-DC–200ns指令周期•带有自动现场保护的中断功能•带有可选上溢/下溢复位的16级深硬件堆栈•直接、间接和相对寻址模式:-两个完全16位文件选择寄存器(FileSelectRegister,FSR)-FSR可以读取程序和数据存储器灵活的振荡器结构:•16MHz内部振荡器模块:-可通过软件选择频率范围:31kHz至16MHz•31kHz低功耗内部振荡器•外部振荡器模块具有:-4种晶振/谐振器模式,频率最高为20MHz-3种外部时钟模式,频率最高为20MHz•故障保护时钟监视器(Fail-SafeClockMonitor,FSCM)-当外设时钟停止时可使器件安全关闭•双速振荡器启动•振荡器起振定时器(OscillatorStart-upTimer,OST)模拟特性:•模数转换器(Analog-to-DigitalConverter,ADC):-10位分辨率-最多28路通道-自动采集功能-可在休眠模式下进行转换•参考电压模块:-具有1.024V、2.048V和4.096V输出的固定参考电压(FixedVoltageReference,FVR)•温度指示器采用nanoWattXLP的超低功耗管理PIC16LF151X:•休眠模式:20nA(1.8V时,典型值)•看门狗定时器:300nA(1.8V时,典型值)•辅助振荡器:600nA(32kHz时)单片机特性:•工作电压范围:-2.3V-5.5V(PIC16F151X)-1.8V-3.6V(PIC16LF151X)•可在软件控制下自编程•上电复位(Power-onReset,POR)•上电延时定时器(Power-upTimer,PWRT)•可编程低功耗欠压复位(Low-PowerBrown-OutReset,LPBOR)•扩展型看门狗定时器(WatchdogTimer,WDT)•通过两个引脚进行在线串行编程(In-CircuitSerialProgramming™,ICSP™)•通过两个引脚进行在线调试(In-CircuitDebug,ICD)•增强型低电压编程(Low-VoltageProgramming,LVP)•可编程代码保护•低功耗休眠模式•低功耗BOR(LPBOR)外设特点:•最多35个I/O引脚和1个仅用作输入的引脚:-高灌/拉电流:25mA/25mA-可单独编程的弱上拉-可单独编程的电平变化中断(Interrupt-On-Change,IOC)引脚•Timer0:带有8位预分频器的8位定时器/计数器•增强型Timer1:-带有预分频器的16位定时器/计数器-外部门控输入模式-低功耗32kHz辅助振荡器驱动器•Timer2:带有8位周期寄存器、预分频器和后分频器的8位定时器/计数器•两个捕捉/比较/PWM(Capture/Compare/PWM,CCP)模块:•带有SPI和I2CTM的主同步串行口(MasterSynchronousSerialPort,MSSP):-7位地址掩码-兼容SMBus/PMBusTM•增强型通用同步/异步收发器(EnhancedUniversalSynchronousAsynchronousReceiverTransmitter,EUSART)模块:-兼容RS-232、RS-485和LIN-自动波特率检测-接收到启动位时自动唤醒
2023/2/9 10:11:05 5.76MB PIC16F1516 PIC16F1517 PIC16F1518 PIC16F1519
1
利用8251实现串行口自发自收,并显示。
设计要求:1.按“E”键:清除数码管显示,并通过键盘输入四位十六进制数(说明:由于E和F键被占用,故此题中每位十六进制数仅从0~D),同时显示在右侧四个数码管上。
2.按“F”键:执行串行发送,完成后在最右侧数码管上显示“P.”,并以1秒(留意:必须通过硬件实现)间隔闪烁8次。
3.将经串口接收到的四位十六进制数转换为十进制数,若结果大于9999,则在数码管上显示“Error8”,否则在右侧四个数码管上显示计算结果(十进制)。
1
共 28 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡