旋转的风扇按钮-单选题海底世界浏览画卷52-自动下棋热区-几何画板限制重试+猜数字游戏3随机抢答题滑杆知识对象多项选择题涵盖广!例子丰富!绝对经典
2023/11/18 3:58:52 3.49MB authorware 源代码 素材
1
UnityURP做热空气扭曲的Demo项目,兼容扭曲半透明,并处理与PostProcessing的Bloom冲突问题。
2023/11/13 11:42:53 62.74MB Unity URP 扭曲
1
提出改进非劣分类遗传算法NSGA-Ⅱ在燃煤锅炉多目标燃烧优化中的应用,优化的目标是锅炉热损失及NOx排放最小化。
首先,采用BP神经网络模型分别建立了300MW燃煤锅炉的NOx排放特性模型和锅炉热损失模型,同时利用锅炉热态实验数据对模型进行了训练和验证,结果表明,BP神经网络模型可以很好地预测锅炉的排放特性和锅炉的热损失特性。
在建立的锅炉排放特性和热损失BP神经网络模型基础上,采用非劣分类遗传算法对锅炉进行多目标优化,针对NSGA-Ⅱ在燃煤锅炉燃烧多目标优化问题应用中Pareto解集分布不理想、易早熟收敛的问题,在拥挤算子及交叉算子上进行了相应改进。
优化结果表明,改进NSGA-Ⅱ方法与BP神经网络模型结合可以对锅炉燃烧实现有效的多目标寻优、得到理想的Pareto解,是对锅炉燃烧进行多目标优化的有效工具,同改进前的NSGA-Ⅱ优化结果比较,其Pareto优化结果集分布更好、解的质量更优。
1
热传导模型及参数的决定对热防护服装的数理研宄,主要是要用数学模型描述热防护服装-空气层-皮肤系统内的热力学规律,为热防护服装的功能性设计提供理论参考.当前对于热防护服的研宄主要集中在热防护服装新型测试方法、服装热防护性能预测模型,以及对新兴材料在热防护服装上的应用等等.本文通过多层热防护服-空气层-皮肤这一系统来完整阐述热传递过程,并结合烧伤准则,给出了各级烧伤时间的预测及系统参数的初步研宄.同时,综合考虑皮肤层的热传递模型及烧伤评价模型
2023/11/12 9:10:54 2.77MB 算法
1
百度热力图,实时路况图,
2023/11/5 5:46:09 3KB 百度热力图
1
过去的几十年里,计算机模拟在材料科学与技术中的应用对于材料设计的定量化产生了革命性的影响。
各种热力学和动力学模型的组合使得预测材料加工过程中材料的成份、结构及性质成为了可能。
数学模型在产品研发和过程控制中日益显著的重要性佐证了对于热力学计算和动力学模拟的迫切需求。
并且现代定量化的材料设计已经从计算热力学及动力学中获得了巨大的收益。
将多元多相体系中各元素/组元/相的热力学平衡和局部平衡信息以及材料加工过程中的相变动力学(以及化学反应、表面反应、形核、熟化、流体流动性等)信息整合在一个软件系统中对于解决化工、冶金、汽车、航天及电子工业中材料设计和过程控制中的实际问题是至关重要的,并将同时满足自然和环境工程中资源勘探、能源循环和废弃物处理的需要。
热力学/动力学数据库最重要的特性之一就是提供了在不同外部和内部因素影响下研究热力学平衡以及动力学过程一种较之实验方法更为快捷的手段。
此外,热力学及动力学数据库与工具手册相比可以为用户提供自相一致、可行的以及最新的数据。
一个通用的热力学/动力学数据库必将为多个传统上认为是不同的领域提供高品质的内部一致的数据,如冶金、钢铁/合金、陶瓷、高温气相平衡、溶液化学以及地球化学。
在绝大多数的应用中,多元多相体系/过程中由于组分数量众多以至于必须采用计算机软件才可以快速并准确地计算各种热力学平衡及动力学过程。
现有的Thermo-Calc和DICTRA数据库系统即是这样的成功的尝试,它是一套强大且精细的软件系统,简单易学同时可以用于计算各种热化学计算以及一些类型的动力学模拟。
通过Thermo-Calc进行热力学计算以及DICTRA进行动力学模拟可以显著地提高用户在研发设计新材料、选取热处理温度、优化制造过程、指导材料应用以及保护环境等方面的能力。
这样一套功能全面的软件/数据库/接口程序在世界范围能被证明是最强大而灵活的工程软件,它可以大大减少耗时费力的实验,提高产品品质和控制环境影响。
1
资源为IGBT模块二极管热模型,可用于PLECS仿真。
具体包括:IGA30N60H3_IGBT.xmlIGB10N60T_IGBT.xmlIGB15N60T_IGBT.xmlIGB20N60H3_IGBT.xmlIGB30N60H3_IGBT.xmlIGB30N60T_IGBT.xmlIGB50N60T_IGBT.xmlIGD06N60T_IGBT.xmlIGP06N60T_IGBT.xmlIGP10N60T_IGBT.xmlIGP15N60T_IGBT.xmlIGP20N60H3_IGBT.xmlIGP30N60H3_IGBT.xmlIGP30N60T_IGBT.xmlIGP50N60T_IGBT.xmlIGU04N60T_IGBT.xmlIGW08T120_IGBT.xmlIGW100N60H3_IGBT.xmlIGW15N120H3_IGBT.xmlIGW15T120_IGBT.xmlIGW20N60H3_IGBT.xmlIGW25N120H3_IGBT.xmlIGW25T120_IGBT.xmlIGW30N60H3_IGBT.xmlIGW30N60TP_IGBT.xmlIGW30N60T_IGBT.xmlIGW40N120H3_IGBT.xmlIGW40N60H3_IGBT.xmlIGW40N60TP_IGBT.xmlIGW40T120_IGBT.xmlIGW50N60H3_IGBT.xmlIGW50N60TP_IGBT.xmlIGW50N60T_IGBT.xmlIGW60N60H3_IGBT.xmlIGW60T120_IGBT.xmlIGW75N60H3_IGBT.xmlIGW75N60T_IGBT.xmlIKA06N60T_IGBT.xmlIKA08N65ET6_IGBT.xmlIKA10N60T_IGBT.xmlIKA10N65ET6_IGBT.xmlIKA15N60T_IGBT.xmlIKA15N65ET6_IGBT.xmlIKB06N60T_IGBT.xmlIKB10N60T_IGBT.xmlIKB15N60T_IGBT.xmlIKB20N60H3_IGBT.xmlIKB20N60TA_IGBT.xmlIKB20N60T_IGBT.xmlIKB30N65ES5_IGBT.xmlIKB40N65ES5_IGBT.xmlIKD03N60RF_IGBT.xmlIKFW40N60DH3E_IGBT.xmlIKFW50N60DH3E_IGBT.xmlIKFW50N60DH3_IGBT.xmlIKFW50N60ET_IGBT.xmlIKFW60N60DH3E_IGBT.xmlIKFW60N60EH3_IGBT.xmlIKFW75N60ET_IGBT.xmlIKFW90N60EH3_IGBT.xmlIKI04N60T_IGBT.xmlIKP04N60T_IGBT.xmlIKP06N60T_IGBT.xmlIKP10N60T_IGBT.xmlIKP15N60T_IGBT.xmlIKP20N60H3_IGBT.xmlIKP20N60TA_IGBT.xmlIKP20N60T_IGBT.xmlIKQ100N60T_IGBT.xmlIKQ120N60T_IGBT.xmlIKQ40N120CH3_IGBT.xmlIKQ40N120CT2_IGBT.xmlIKQ50N120CH3_IGBT.xmlIKQ50N120CT2_IGBT.xmlIKQ75N120CH3_IGBT.xmlIKQ75N120CT2_IGBT.xmlIKU04N60T_IGBT.xmlIKW08N65H5_IGBT.xmlIKW08T120_IGBT.xmlIKW15N120H3_IGBT.xmlIKW15N120T2_IGBT.xmlIKW15N65H5_IGBT.xmlIKW15T120_IGBT.xmlIKW20N60H3_IGBT.xmlIKW20N60TA_IGBT.xmlIKW20N60T_IGBT.xmlIKW25N120H3_IGBT.xmlIKW25N120T2_IGBT.xmlIKW25T120_IGBT.xmlIKW30N60DTP_IGBT.xmlIKW30N60H3_IGBT.xmlIKW30N60TA_IGBT.xmlIKW30N60T_IGBT.xmlIKW30N65ES5_IGBT.xmlIKW40N120H3_IGBT.xmlIKW40N120T2_IGBT.xmlIKW40N120T2_v2_IGBT.xmlIKW40N60DTP_IGB
2023/10/26 20:44:46 87KB PLECS
1
目录第1章绪论 1.1通信系统的基本概念  1.1.1通信系统的组成  1.1.2通信系统的基本特性  1.1.3通信系统的信道  1.1.4通信系统中的信号  1.1.5通信系统中的发送与接收设备 1.2信号传输的基本问题  1.2.1信号通过线性系统  1.2.2信号通过线性系统  1.2.3干扰 1.3通信电路的基本形式 1.4关于本书的内容  1.4.1关于信号变换的理论和技术  1.4.2关于电路第2章滤波器 2.1引言 2.2滤波器的特性和分类  2.2.1滤波器的特性  2.2.2滤波器的分类 2.3LC滤波器  2.3.1LC串、并联谐振回路  2.3.2般LC滤波器 2.4声表面波滤波器 2.5有源RC滤波器  2.5.1构成有源RC滤波器的单元电路  2.5.2运算仿真法实现有源RC滤波器  2.5.3级联法实现有源RC滤波器(x)  2.5.4自动校正有源RC滤波器(x) 2.6抽样数据滤波器(x)  2.6.1抽样数据单元电路  2.6.2抽样数据滤波器  2.6.3连续域到离散域的映射 2.7小结  习题第3章高频放大器 3.1引言 3.2晶体管的高频小信号等效电路和参数  3.2.1双极型晶体管混合x型等效电路和参数  3.2.2场效应管的等效电路和参数  3.2.3晶体管的y参数等效电路 3.3高频小信号宽带放大器  3.3.1概述  3.3.2共发射极放大器  3.3.3共基极放大器  3.3.4共发共基级联电路  3.3.5场效应管高频小信号放大器  3.3.6展宽频带的措施(x)  3.3.7自动增益控制(ACC)电路 3.4放大器的噪声  3.4.1电阻的热噪声  3.4.2电子器件的噪声  3.4.3噪声系数  3.4.4接收机的灵敏度与最小可检测信号  3.4.5噪声温度  3.4.6低噪声放大器(x) 3.5宽带功率放大器(x)  3.5.1A类功率放大器的基本电路特性  3.5.2B类与AB类功率放大器  3.5.3传输线变压器  3.5.4宽频带放大器晶体管工作状态的选择  3.5.5功率的合成与分配 3.6小结  习题第4章线性电路及其分析方法 4.1引言 4.2线性电路的基本概念与线性元件  4.2.1线性电路的基本概念  4.2.2线性元件 4.3线性电路的分析方法  4.3.1线性电路与线性电路分析方法的异同点  4.3.2线性电阻电路的近似解析分析  4.3.3线性动态电路分析简介(x) 4.4线性电路的应用举例  4.4.1C类谐振功率放大器  4.4.2D类和E类功率放大器(x)  4.4.3倍频器  4.4.4模拟相乘器  4.4.5时变参量电路与变频器 4.5小结附录余弦脉冲系数表习题第5章正弦波振荡器第6章 调制与解调第7章锁相环路第8章频率合成技术名词索引参考文献注:带(x)者为作者建议可列为选读内容的部分
2023/10/25 11:35:46 7.33MB 通信 电路 微波 射频
1
在一些温控系统电路中,广泛采用的是通过热电偶、热电阻或PN结测温电路经过相应的信号调理电路,转换成A/D转换器能接收的模拟量,再经过采样/保持电路进行A/D转换,最终送入单片机及其相应的外围电路,完成测控。
但是由于传统的信号调理电路实现复杂、易受干扰、不易控制且精度不高。
本设计介绍单片机结合DS18B20水温控制系统。
本控制系统采用一种新型的可编程智能型数字温度传感器(DS18B20),不需复杂的信号调理电路和A/D转换电路能直接与单片机完成数据采集和处理,实现方便、精度高,可根据不同需要用于各种测温场合。
2023/10/24 18:55:12 241KB 51单片机
1
该程序组共包含10个子程序,全部为计算水和水蒸汽性质的子程序,采用的是国际公式化委员会制定的水和水蒸气热力性质(IFC67)公式。
各子程序分别是:TSK.m求某下压力饱和温度。
PSK.m某温度下饱和压力。
HS.m已知比焓、比熵,求其它性质。
PX.m已知压力、干度,求其它性质。
PV.m已知压力、比熵,求其它性质。
PTG.m已知压力、温度,求饱和汽、过热蒸汽的性质。
PTF.m已知压力、温度,求饱和水、过冷水的性质。
PT.m已知压力、温度,求其它性质。
PS.m已知压力、比熵,求其它性质。
PH.m已知压力、比焓,求其它性质该程序是汽轮机设计和热力系统设计的好帮手,减少了查表的麻烦。
2023/10/17 21:12:40 184KB IAPWS
1
共 443 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡