发抖模糊是拍照中罕有的下场,为此提出了一个鲁棒快捷的核函数估量以及图像规复方式。
给定一幅因相机发抖而模糊的图像,该方式起首建树金字塔,而后自顶向下、迭代地估量行为模糊核函数,同时对于图像举行规复。
使用稠浊高斯模子对于核函数建模,使用做作图像的边缘大尾巴漫衍对于图像举行解放。
经由袭击滤波器料想图像的强边缘,对于图像的边缘与核函数举行解放,从而更好地估量核函数。
并经由畅通阈值方式以及核函数重新定位的方式,飞腾核函数的噪声,普及核函数估量的鲁棒成果。
在求解核函数能量方程时,付与共轭梯度法,行使图像的一阶以及二阶偏导数飞腾体系方程的前提数,减速收敛速率。
末了,在一个国内果真的搜罗32组行为模糊图像的数据集上验证了该方式。
试验下场评释,该方式所规复的图像,其边缘以及纹理明晰,能够很好地防止噪声以及振铃走样下场。
1
MATLAB松散实例实现共轭梯度,使用了典型共轭飞腾公式,DY公式,FR公式,PRP+公式以及PRP公式,处置最优化下场
2023/5/2 23:02:38 11KB 共轭梯度 DY公式 FR公式 PRP+公式
1
FAST算法原理:若某像素与其四处邻域内足够多的像素点相差较大,则该点大若是角点。
用FAST算法检测角点,替换差分高斯金字塔取极值检测角点的方式,速率块;
接着用SIFT特色描摹符描摹角点,省略尺度空间值,只用原图像中角点邻域的梯度值以及倾向盘算角点主倾向,接着盘算32个倾向向量来描摹角点。
之以及可用于特色点匹配。
2023/4/29 15:47:09 42KB FAST,SIFT
1
行使光纤镜头以及玄色产业摄像机实时收集激光切割厚板中切割点的图像,从玄色图像平分别选取蓝色、绿色以及血色通道图像,阐发各通道图像的特色以及切割点的若干外形特色。
起首以激光中间在图像中的位置为中间建树坐标系,以x轴倾向为起始,45°为距离向8个倾向搜查激光切割地域的边缘点,依据边缘点到坐标原点的距离信息未必激光切割倾向以及切割顶点;
建树边缘识别用抛物线模子,依据边缘处存在灰度特色、梯度特色以及倾向特色方案识别目的函数,识别切割顶点两侧边缘,进而识别全部切割点处的若干外形。
试验评释识别方式具备精采的顺应性、准确性以及实时性。
2023/4/29 14:12:16 3.74MB 激光技术 激光切割 厚板 边缘识别
1
本文思考了一类视察器尺度外形空间体系的参数估量下场。
借助移位运算符的属性,将空间外形模子转换为输入-输入展现方式。
而后,提出了一种时变的淡忘因子随机梯度与卡尔曼滤波算法相松散的方式。
所提出的算法基于交互式估量未知参数,以实现体系的齐全参数识别。
数值例子验证了所提算法的实用性。
2023/4/27 0:03:02 961KB Dynamic systems; Parameter estimation;
1
本文针对于往频频用的多少种永磁同步电机弱磁抑制方式举行综述。
基于抑制货物的不合,对于弱磁抑制方式举行分类,并详尽介绍了目前比力罕有的负id赔偿法、查表法、梯度飞腾法、电流角度法、单电流调解器法等方式
2023/4/26 23:55:54 105KB 永磁同步电机 弱磁 方法大全 内置式
1
最优化手写的matlab代码方案,搜罗变尺度法+步长减速+倾向减速法+公轭梯度法
2023/4/20 8:20:57 23KB matlab 最优化
1
梯度飞腾纯手工实现MLPCNNRNNSEQ2SEQ识别手写体MNIST数据集极其类下场代码详解.
2023/4/18 22:56:30 11.08MB 深度学习 基础网络模型 Deep Learnin
1
就多少行,用能量梯度函数盘算的。
评估时还要松散另外图像目的。
2023/4/17 4:07:42 198B matlab 锐度
1
直接转矩抑制本领的关键下场是如安在定子电阻不用定的情景下,准确辨识定子磁链。
经由转子磁链定向的方式,推导出转差的表白式,此表白式中搜罗定子电阻的信息,当定子电阻暴发变更时,盘算进去的转差与实际的转差不至关,基于这种脑子构建了模糊神经收集,付与梯度飞腾法熬炼收集的参数,实现对于定子电阻的在线辨识。
针对于所提出的方式,在matlab/simulink中搭建模子举行仿真,下场评释在定子电阻受干扰的情景下,此方式能准确、快捷地追寻定子电阻的变更,实梦想时调解,感应电机的低速成果患上到改善。
2023/4/13 13:23:25 635KB 论文研究
1
共 276 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡