该文件用于提取混合物中的成分信息。
您需求的是光谱图像的数据集。
您可以获得的结果包括混合物成分的空间分布和成分的纯光谱。
化学计量学中类似的算法更强大,称为多元曲线分辨率(MCR)。
外部约束也用于强制算法输出期望的结果。
随意进行任何更改。
2020/8/7 10:39:12 2KB matlab
1
文件中给出案例数据,列代表指标集(输入集x:1-7,输出集y:8)行代表数据集。
可以用于本科毕业论文或者硕士毕业论文,首先使用SPSS进行出成分分析,然后将主成分得分值作为输入集,输出集保持不变。
通过该算法文件就可以得到预测值,具体步骤可以参考《基于SVM和LS-SVM的住宅工程造价预测研究》。
本算法使用BP神经网络的误差函数作为GWO算法的适应度函数,通过BP神经网络连接权值和阈值的数量来决定GWO算法中灰狼的维数,那么GWO算法寻优的过程就是权值和阈值更新的过程。
因而,GWO算法寻优的过程替代了BP神经网络梯度下降的过程。
经过不断更新和迭代,最终确定出全局最优值,即灰狼α所处的位置。
本算法输出的权值和阈值即作为神经网络的权值和阈值,不在通过神经网络继续训练。
可以参考文献《基于粒子群优化算法的BP网络学习研究》。
2019/11/18 17:14:58 13KB 灰狼算法 神经网络
1
DetrendedFluctuationAnalysis,DFA方法的一个优点是它可以无效地滤去序列中的各阶趋势成分,能检测含有噪声且叠加有多项式趋势信号的长程相关,适合非平稳时间序列的长程幂律相关分析
2016/8/19 5:50:11 475B dfa算法
1
视觉导航是智能采棉机器人的基本技术之一。
棉田组成复杂,存在遮挡和照明,难以准确识别出犁沟,从而提取出导航线。
提出了一种基于水平样条分割的野外导航路径提取方法。
首先,通过OTSU阈值算法对RGBcolor.space中的彩色图像进行预处理,以分割犁沟的二值图像。
棉田图像成分分为四类:犁沟(成分包括土地,枯萎的叶子等)。

),棉纤维,棉的其他器官和外部区域或阻塞物。
通过利用HSV模型的色相和值的显着差异,作者将阈值分为两个步骤。
首先,他们在S通道中分割棉绒,然后在棉线区域之外的区域中在V.通道中分割犁沟。
另外,需要形状学处理以滤出小的噪声区域。
其次,水平样条用于分割二值图像。
作者检测水平样条中的连通区域,并合并由棉毛或附近大连通区域中的亮点引起的孤立的小区域,从而获得犁沟的连通区域。
第三,根据相邻导航线候选之间的距离较小的原理,以图像底部的中心为起点,并从连通域的中点开始依次选择候选点。
最后,作者对连接域的数量进行计数,并计算连接域边界线的参数变化,以确保机器人是否到达了野外或遇到障碍物。
如果没有异常,则使用minimum.squares方法由导航点拟合导航路径。
2017/7/15 20:54:57 896KB otton-Picking Robot Horizontal Spline
1
本资源是斯坦福ML公开课笔记的13-15部分。
次要内容包括混合高斯模型、混合贝叶斯模型、因子分析模型、主成分分析、奇异值分解、隐含语义索引和独立成分分析等内容。
欢迎下载
2015/6/26 19:42:55 1.33MB 机器学习 斯坦福公开课 笔记
1
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡