DBSCAN聚类,是一种基于密度的聚类算法,它类似于均值漂移,DBSCAN与其他聚类算法相比有很多优点,首先,它根本不需要固定数量的簇。
它也会异常值识别为噪声,而不像均值漂移,即使数据点非常不同,也会简单地将它们分入簇中。
另外,它更抗噪音,能够很好地找到任意大小和任意形状的簇。
DBSCAN的聚类过程就是根据核心弱覆盖点来推导出最大密度相连的样本集合,首先随机寻找一个核心弱覆盖样本点,按照Minpts和Eps来推导其密度相连的点,然后再选择一个没有赋予类别的核心弱覆盖样本点,开始推导其密度相连的样本结合,不断迭代到所有的核心样本点都有对应的类别为止。
作者博客中详细介绍了DBSCAN的算法原理,可以通过文章结合学习,代码包含详细注释,只需要导入自己的聚类数据,运行代码便可以得出聚类结论与图像。
2019/2/13 8:01:39 4KB DBSCAN 数学建模 python 算法
1
经过聚类优化RBF神经网络参数,拟合曲线的小程序
2020/1/4 5:02:30 1KB 聚类算法 RBF神经网络 matlab
1
运用matlab编写的关于径向基网络的程序,包括RBF神经网络的三种算法:聚类算法、梯度法、最小二乘法OLS
2020/6/15 22:28:33 2KB RBF网络 matlab
1
1、利用历史数据进行风电功率预测,数据的质量对预测准确度有很大的影响,此外,了解风速、功率在不同时段的变化特性,采取针对性、差异化的参数配置,有助于提高预测算法的效率和模型对具体数据的顺应性。
本课题主要采用K均值聚类算法对风速和功率数据进行聚类,剔除不合理的数据,再通过BP神经网络实现短期风电功率预测。
2、BP神经网络、kmeans聚类算法。
3、matlab仿真;
1
用c语言实现的传统k_meams算法可以实现对任意维数的数据进行统计,计算中心点,并进行分类数据以文本的方式读入,以文本的方式输出。
2017/7/24 15:35:28 21KB
1
读者调用案例的时候,只要把案例中的数据换成自己需要处理的数据,即可实现自己想要的网络。
如果在实现过程中有任何疑问,可以随时在MATLAB中文论坛与作者交流,作者每天在线,有问必答。
该书共有30个MATLAB神经网络的案例(含可运行程序),包括BP、RBF、SVM、SOM、Hopfield、LVQ、Elman、小波等神经网络;还包含PSO(粒子群)、灰色神经网络、模糊网络、概率神经网络、遗传算法优化等内容。
该书另有31个配套的教学视频帮助读者更深入地了解神经网络。
本书可作为本科毕业设计、研究生项目设计、博士低年级课题设计参考书籍,同时对广大科研人员也有很高的参考价值。
图书目录第1章P神经网络的数据分类--语音特征信号分类第2章BP神经网络的非线性系统建模--非线性函数拟合第3章遗传算法优化BP神经网络--非线性函数拟合第4章神经网络遗传算法函数极值寻优--非线性函数极值寻优第5章基于BP_Adaboost的强分类器设计--公司财务预警建模第6章PID神经元网络解耦控制算法--多变量系统控制第7章RBF网络的回归--非线性函数回归的实现第8章GRNN的数据预测--基于广义回归神经网络的货运量预测第9章离散Hopfield神经网络的联想记忆--数字识别第10章离散Hopfield神经网络的分类--高校科研能力评价第11章连续Hopfield神经网络的优化--旅行商问题优化计算第12章SVM的数据分类预测--意大利葡萄酒种类识别第13章SVM的参数优化--如何更好的提升分类器的功能第14章SVM的回归预测分析--上证指数开盘指数预测第15章SVM的信息粒化时序回归预测--上证指数开盘指数变化趋势和变化空间预测第16章自组织竞争网络在模式分类中的应用--患者癌症发病预测第17章SOM神经网络的数据分类--柴油机故障诊断第18章Elman神经网络的数据预测--电力负荷预测模型研究第19章概率神经网络的分类预测--基于PNN的变压器故障诊断第20章神经网络变量筛选--基于BP的神经网络变量筛选第21章LVQ神经网络的分类--乳腺肿瘤诊断第22章LVQ神经网络的预测--人脸朝向识别第23章小波神经网络的时间序列预测--短时交通流量预测第24章模糊神经网络的预测算法--嘉陵江水质评价第25章广义神经网络的聚类算法--网络入侵聚类第26章粒子群优化算法的寻优算法--非线性函数极值寻优第27章遗传算法优化计算--建模自变量降维第28章基于灰色神经网络的预测算法研究--订单需求预测第29章基于Kohonen网络的聚类算法--网络入侵聚类第30章神经网络GUI的实现--基于GUI的神经网络拟合、模式识别、聚类
2021/6/17 23:08:54 61.64MB matlab
1
本科毕业论文,蛋白质网络聚类算法分析平台设计与完成,平台ClusterE
2017/5/13 22:04:12 3.8MB ClusterE 蛋白质网络 PPI 聚类算法
1
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡