狂雨小说cms是非常好用的一个系统,搭建起来一键安装,就算是小白也能几分钟就搭建出来,奈何很多人不对写采集规则,一个小说站没有采集手动发布是不太现实的事情,但很多人一看到采集规则却不晓得怎么下手,或者完全不会,要不然就是高价去找人写采集规则,并且有的规则可能过个一两个月就不能用了,大大增加了各位站长的时间成本,这里我就免费分享个一个长期可用的采集规则,经测试完全可用,并且很长时间还能用。
也祝各位站长站点早日百度权重权7哈哈需要的站长可以下载
2018/1/13 13:42:30 57B php 小说cms 狂雨小说
1
数据融合matlab代码自适应加权学习网络的轻量图像超分辨率王朝峰,李振和石军,“具有自适应加权学习网络的轻量图像超分辨率”,该代码基于依存关系的Python3.5PyTorch>=0.4.0麻木skimage意象matplotlibtqdm代码 gitclonegit@github.com:ChaofWang/AWSRN.git cdAWSRN抽象的近年来,深度学习已以出色的功能成功地应用于单图像超分辨率(SISR)任务。
但是,大多数基于卷积神经网络的SR模型都需要大量计算,这限制了它们在现实世界中的应用。
在这项工作中,为SISR提出了一种轻量级SR网络,称为自适应加权超分辨率网络(AWSRN),以解决此问题。
在AWSRN中设计了一种新颖的局部融合块(LFB),用于有效的残差学习,它由堆叠的自适应加权残差单元(AWRU)和局部残差融合单元(LRFU)组成。
此外,提出了一种自适应加权多尺度(AWMS)模块,以充分利用重建层中的特征。
AWMS由几个不同的尺度卷积组成,并且可以根据AWMS中针对轻量级网络的自适应权重的贡献来删除冗余尺度分
2018/6/1 12:43:36 3.95MB 系统开源
1
深度进修神经网络模型权重
2015/7/9 6:02:25 107.35MB 深度学习
1
本文考虑采用平滑L0正则化(BGSL0)的批梯度方法进行训练和修剪前馈神经网络。
我们展示了为什么BGSL0可以产生稀疏的权重,这对于修剪网络。
我们证明了在温和条件下BGSL0的弱收敛和强收敛。
还获得了误差函数在训练过程中递减的单调性。
两个例子是用来证明理论分析并显示BGSL0的稀疏性比三个典型Lp正则化更好方法。
2015/1/7 16:35:10 494KB 研究论文
1
本文针对火灾报警系统问题,建立熵权-topsis逻辑回归等数学模型,旨在通过所建模型来选取可靠的探测器、提高报警准确率及改进各辖区综合管理水平,从而减少我国火灾事故。
针对问题一,首先根据地址、机号和回路,确定真实火灾数为418起。
接着根据题目要求,基于可靠性和故障率两个指标建立综合评价模型。
由于可靠性为效益型指标,而故障率为成本型指标,故将故障率通过数学公式转换为效益型指标,即完善率。
指标确定后,运用熵权法确定各指标权重,最后利用topsis法构建各类型部件评价模型,对16种部件进行综合评价,帮助政府选择最可靠的5种火灾探测器类型,分别为光束感烟、手动报警按钮、智能光电探头、点型感温探测器、线性光束感烟。
针对问题二,建立基于logistic回归的区域报警部件类型智能研判模型。
本文选择故障次数、消防大队及探测器类型3个变量作为自变量,误报与否作为因变量,将消防大队和探测器类型两个无序分类变量变为虚拟变量,利用logistic回归模型预测辖区内某类型部件发出报警信息正确的概率,经检验模型的真实性为。
经检验结果有所偏差,故进行模型优化用woe值代替原值计算,使得结果愈加真实可靠。
2021/11/25 4:12:28 291KB 数学建模
1
要解决的是一个医学图像的二分类问题,有AK和SK两种病症,根据一定量数据,进行训练,对图像进行预测。
给定图片数据的格式:解决思路整体上采用迁移学习来训练神经网络,使用InceptionV3结构,框架采用keras.具体思路:读取图片数据,保存成.npy格式,方便后续加载标签采用one-hot方式,由于标签隐藏在文件夹命名中,所以需要自行添加标签,并保存到.npy文件中,方便后续加载将数据分为训练集、验证集、测试集使用keras建立InceptionV3基本模型,不包括顶层,使用预训练权重,在基本模型的基础上自定义几层神经网络,得到最后的模型,对模型进行训练优化模型,调整超参数,提高准确率在测试集上对模型进行评估,使用精确率、召回率对单张图片进行预测,并输出每种类别的概率如何加载实际数据,如何保存成npy文件,如何打乱数据,如何划分数据,如何进行交叉验证如何使用keras进行迁移学习keras中数据增强、回调函数的使用,回调函数涉及:学习速率调整、保存最好模型、tensorboard可视化如何使用sklearn计算准确率,精确率,召回率,F1_
2019/2/11 6:55:35 1003KB keras 深度学习 图像分类 cv
1
简单的AHP计算器,用和积法计算权重(仅支持三阶矩阵),界面简单明了,具体细节请使用软件。
如对功能有问题,可以自行修改源码,附有详细正文。
2017/9/2 8:56:18 41KB android源码 AHP 层次分析法 和积法
1
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡