机器学习实战支持向量机代码,分为简易SMO,完整SMO,引入核函数SMO,以及实战利用其做手写字体的识别。
完整的代码需要数学理论作为依托,请关注我的学习文档,有完整的理论证明,供大家参考。
1
利用ExcelVBA定制的国家免费孕前优生健康信息登记管理系统,支持服务对象信息的录入,体检单、评估单,婚检证明的打印及风险评估结果的打印,整合以上信息至一表,减轻工作强度。
2023/11/26 16:47:21 1.53MB 孕前优生 Excel VBA 信息管理系统
1
本帖代码和教程有Matlab技术论坛原创,原帖参见http://www.matlabsky.com/viewthread.php?tid=3885一、数值积分基本公式数值求积基本通用公式如下Eqn1.gif(1.63KB)2009-11-2023:23xk:求积节点Ak:求积系数,与f(x)无关数值积分要做的就是确定上式中的节点xk和系数Ak。
可以证明当求积系数Ak全为正时,上述数值积分计算过程是稳定。
二、插值型数值积分公式对f(x)给定的n+1个节点进行Lagrange多项式插值,故Eqn2.gif(2.95KB)2009-11-2023:23即求积系数为Eqn3.gif(3.29KB)2009-11-2023:23三、牛顿-柯特斯数值积分公式当求积节点在[a,b]等间距分布时,插值型积分公式(先使用Lagrange对节点进行多项式插值,再计算求积系数,最后求积分值)称为Newton-Cotes积分公式。
由于Newton-Cotes积分是通过Lagrange多项式插值变化而来的,我们都知道高次多项式插值会出现Runge振荡现象,因此会导致高阶Newton-Cotes公式不稳定。
Newton-Cotes积分公式的求积系数为Eqn4.gif(3.38KB)2009-11-2023:28其中C(k,n)称为柯特斯系数。
(1)当n=1时,Newton-Cotes公式即为梯形公式Eqn5.gif(1.68KB)2009-11-2023:28容易证明上式具有一次代数精度(对于Newton-Cotes积分公式,n为奇数时有n次迭代精度,n为偶数时具有n+1次精度,精度越高积分越精确,同时计算量也越大)(2)当n=2时,Newton-Cotes公式即为辛普森(Simpson)公式或者抛物线公式Eqn6.gif(2.04KB)2009-11-2023:28上式具有3次迭代精度(3)当n=4时,Newton-Cotes公式称为科特斯(Cotes)公式Eqn7.gif(2.68KB)2009-11-2023:28上式具有5次迭代精度。
由于n=3和n=2时具有相同的迭代精度,但是n=2时计算量小,故n=3的Newton-Cotes积分公式用的很少(4)当≥8时,通过计算可以知道,在n=8时柯特斯系数出现负值由于数值积分稳定的条件是求积系数Ak必须为正,所以n>=8以上高阶Newton-Cotes公式,我们不能保证积分的稳定性(其根本原因是,Newton-Cotes公式是由Lagrange插值多项推导出来的,而高阶多项式会出现Rung现象)。
四、复化求解公式n阶Newton-Cotes公式只能有n+1个积分节点,但是高阶Newton-Cotes公式由不稳定。
为了提高大区间的数值积分精度,我们采用了分段积分的方法,即先将原区间划分成若干小区间,然后对每一个小区间使用Newton-Cotes积分公式,这就是复化Newton-Cotes求积公式。
(1)当n=1时,称为复化梯形公式。
将[a,b]等分为n份,子区间长度为h=(b-a)/n,则复化梯形公式为(注意:复化求解公式不需要求积子区间等间距,只是Newton-Cotes公式分段积分时自动对小区间进行等分,我们这里采用等分子区间是为了便于计算而已)Eqn8.gif(2.18KB)2009-11-2023:28(2)当n=2时,称为复化辛普森公式。
Eqn9.gif(2.96KB)2009-11-2023:28五、Newton-Cotes数值积分公式Matlab代码
2023/11/26 8:36:30 126KB Matlab 技术论坛 牛顿 科特斯
1
本文介绍了利用可编程控制器编写的一个五层电梯的控制系统,检验电梯PLC控制系统的运行情况。
实践证明,PLC可遍程控制器和MCGS组态软件结合有利于PLC控制系统的设计、检测,具有良好的应用价值
2023/11/24 13:13:46 304KB PLC 电梯 电梯控制
1
readme.txt项目名称:WatchProcessService功能描述:使用系统服务的方式,守护进程的开启状态。
使用步骤:1、解压WatchProcess.rar,能看到这个文件,证明已经解压了。
笑。
2、修改WatchProcessService.config中的内容 appname填写进程运行时的名称,不要加exe哦。
filepath程序的绝对路径 拷贝WatchProcessService.config到C:\WINDOWS\system32,因为服务运行时会默认为该目录3、运行install.bat文件4、打开服务 开始-运行-cmd-services.msc5、找到服务WatchProcessService 右键-属性 登录-允许服务与桌面交互应用 常规-启动确定PS:没有资源分了,收2分,评论后还给你哈。
2023/11/23 9:58:41 23KB C# 守护进程服务
1
运行使用jupyter,pycharm均可,基于python3,算法是由计算导论课本上的证明步骤得来的,欢迎参考留言
2023/11/22 14:08:42 7KB 乔姆斯基范式 python实现 CFG
1
每个人都熟悉所谓“小世界现象”:当你遇见一个陌生人,交谈不久之后,我们往往会惊奇地发现:“原来我们有共同的朋友!”或者说,仅通过几个熟识的人,我们就早已经相互联系在一起了。
在这本书中,邓肯瓦茨(Duncan Watts)将这种有趣的现象——俗称“六度分离”(six degreesof separation)——作为研究更一般现象的引子即证明了:在某种特定的条件下,小世界现象会出现在任何一种类型的网络之中。
2023/11/21 13:24:16 6.46MB 小世界网络
1
终止(解除)劳动关系证明.doc
2023/11/18 21:20:25 14KB 软件公司人力文档
1
Matlab关于人工神经网络在预测中的应用的论文二-人工神经网络模型在研究生招生数量预测中的应用.pdf四、灰色人工神经网络人口总量预测模型及应用摘要:针对单一指标进行人口总量预测精度不高的问题,基于灰色系统理论和人工神经网络理论,用1990年至2004年中国人口总量序列建立并训练一个多指标的灰色人工神经网络人口总量预测模型。
对2005年至2007年的人口总量进行检验性预测,结果表明灰色人工神经网络模型大大提高了预测精度。
关键词:人口总量;
灰色系统;
BP人工神经网络;
灰色人工神经网络模型引言:本文从影响人口增长的诸多因素中筛选出6个主要因素,结合灰色系统思想与神经网络的优点建立了一个灰色人工神经网络(GreyArtificialNeuralNetwork,GANN)预测模型,对每一个指标分别用GM(1,1)模型选择最佳的维数进行预测,再利用神经网络非线性映射的特性把这6个指标进行非线性组合得到人口总量的预测结果。
该模型充分利用灰色系统弱化数据的随机性及其动态性和神经网络非线性映射的特性,发挥两者的优势,从而进一步提高预测精度。
中间内容省略~结语:由于传统遗传算法聚类算法本身的优点:在解决聚类问题上速度快、准确率高,加上免疫网络分类算法可以进行非监督学习,确定聚类数及聚类点,在实际聚类应用中有更广阔的适用性;
在这种独特的聚类算法的基础上,结合粗糙集理论构建了一种图像分割算法;
同时,通过实验证明该方法不但比传统的FCM算法聚类速度快,分割效果好,而且比文献[2]的分割准确度还要高。
由于该方法有在聚类上的无教师监督的独特优点,并且通过对人脑MR图聚类和分割的两个实验,证明了该分割算法比以往分割算法在具体应用上都有一定的提高。
灰色人工神经网络人口总量预测模型及应用.pdf五、人工神经网络模型在研究生招生数量预测中的应用摘要:研究生招生数量的确定涉国家政策、社会就业、人才需求、专业分布与需求等诸多因素,这些影响因素往往无法量化,而且各个影响因素之间关系错综复杂,简单的线性模型预测未来招生数量往往难以实现。
尝试采用人工神经网络模型,针对历年招生数量原始数据信息零散、隐含影响因素过多、诸多影响因素难以确定性描述等问题,通过对黑龙江省历年研究生招生数量进行系统分析,建立了人工神经网络预测模型,并对未来3年的招生数量进行了预测,预测结果较好,为该方面研究提供了新的研究思路与研究方法。
关键词:黑龙江省;研究生招生;预测;人工神经网络模型引言:关于研究生招生数量的确定,涉及诸多因素,例如国家政策、社会就业、人才需求、专业分布与需求等等。
这些影响因素往往无法量化,很难找出定量化的因素来进行分析,而这些因素又确确实实在很大程度上影响着研究生招生的数量及其分布。
以往分析预测方法主要是确定性数学模型和随机统计方法,例如有限单元法、有限差分法、灰色理论建模、回归分析、谐波分析、时间序列分析、概率统计法等。
这些方法多以线性理论为基础,考虑问题偏于简单化,导致预测精度不高。
本论文结合黑龙江省1981年—2004年的研究生招生规模,针对历年招生数量原始数据信息零散、隐含影响因素过多、诸多影响因素难以确定性描述等问题,探讨应用一种改进的BP网络模型对未来3年黑龙江省研究生招生规模进行预测,为该方面研究提供新的研究思路与研究模式,并渴望为用人单位、科研院校提供制定长远发展与建设规划提供参考。
中间内容省略~结语:采用人工神经网络模型可以有效的处理黑龙江省研究生数量中涉及的人为、政策等随机因素、难以量化等因素的干扰,拟合精度非常高,预测精度也相对较高,为未来研究生招生规模提供科学理论依据,为该方面研究提供新的研究方法与研究思路。
人工神经网络模型在研究生招生数量预测中的应用.pdf六、基于RBF人工神经网络模型预测棉花耗水量摘要:利用MATLAB工具箱,以平均气温、日照时数、平均风速为输入变量,建立了新疆石河子地区棉花耗水量的RBF人工神经网络预测系统,通过2008年实测数据的检验表明,此预测系统网络模型的绝对误差最大为0.0967mm/d、最小为0.0025mm/d、平均为0.0419mm/d,相对误差最大为2.6491%、最小为0.0341%、平均为0.8780%。
可见,网络模型预测的准确度较高,较以往的线性模型更合理,并且此网络训练花费的时间仅需0.0780s,具有一定的实用价值。
关键词:预测;
人工神经网络;
径向基函数;
棉花耗水量引言:计算机人工神经网络是20世纪8
2023/11/14 19:27:42 352KB matlab
1
数学分析方法选讲作者:刘德祥,刘绍武,冯立新主编出版时间:2014年版内容简介  《数学分析方法选讲》共分6章。
第1章主要阐述分析证明中的一些最常见的基本处理方法与技巧。
根据教学上的考虑和作者自己的体会,把这些常用的处理方法适当命名后止式地予以提出,作者认为这样做有利于学生加深对方法本身的理解。
第2章是Abel方法及应用简介。
在第3章不等式与估值问题部分中,作者利用幂平均函数对各种平均值不等式统一进行了处理。
考虑到交换运算次序在级数求和及积分计算中的重要性,作者在第4章对它进行了一些讨论,并给出了判断级数和积分不一致收敛的比较简单并且使用方便的方法。
第5章简略地介绍了阶的估计及其在极限计算和级数与积分收敛性中的应用。
第6章用较多的例题介绍极限存在性问题的证法和各种极限的求值方法。
各章的内容都有较大的独立性,因此读者在阅读时可根据自己的需要加以选择。
目录第1章分析证明中的几种常用处理方法与技巧1.1截断习题1.11.2叠加习题1.21.3局部化方法习题1.31.4借助辅助函数习题1.41.5离散型问题与连续型问题的相互转换习题1.51.6ε逼迫方法习题1.61.7借助于构造点列和抽取子列习题1.71.8关于利用实数空间基本定理证明问题的几点注释1.8.1有理数集的性质1.8.2实数集的性质1.8.3关于利用实数空间基本定理证明问题的几点注释习题1.8第2章Abel方法2.1Abel变换与Abel引理习题2.12.2Abel方法在级数收敛性判别中的应用2.2.1数项级数收敛性的判别法.2.2.2函数项级数一致收敛性判别法习题2.2.2.3Abel方法在广义积分收敛性判别中的应用2.3.1分部积分公式与积分第二中值定理2.3.2无穷限广义积分收敛性的Abel判别法与Dmchlet判别法2.3.3带参变量广义积分一致收敛性的Abel判别法与Dirichlet判别法习题2.32.4Abel级数求和法习题2.42.5差分的概念及简单应用习题2.5第3章不等式与估值问题3.1不等式的初等证法习题3.13.2证明不等式的凸函数方法3.2.1凸函数的定义及基本性质3.2.2证明不等式的凸函数方法习题3.23.3利用微分学证明不等式习题3.33.4利用积分学证明不等式习题3.43.5估值问题习题3.5第4章几种运算次序的交换性4.1一致收敛性4.1.1函数项级数的一致收敛性4.1.2含参变量积分的一致收敛性习题4.14.2运算次序的交换性4.2.1求和与其他运算的可换性4.2.2积分与其他运算次序的可换性习题4.2第5章阶的估计及应用5.1阶的定义及运算5.1.1无穷小量与无穷大量的阶的定义5.1.2阶的性质和运算习题5.15.2阶的估计5.2.1函数的Taylor展开式5.2.2阶与主部的求法习题5.25.3阶的应用5.3.1利用阶计算极限5.3.2阶的估计在级数与广义积分收敛性中的应用习题5.3第6章极限的存在性与求值问题6.1关于极限定义的若干注释6.1.1关于过程的刻画和变量的刻画6.1.2关于变量不存在极限的描述6.1.3变量趋于无穷大的情形习题6.16.2关于极限的存在性习题6.26.3极限的求值6.3.1利用定义和两边夹原理求极限6.3.2利用Stolz定理和L'Hospital法则求极限6.3.3建立以极限值为变元的方程求极限6.3.4利用积分和求极限6.3.5利用Reimann引理求极限6.3.6利用Toeplitz定理求极限6.3.7求极限的其他方法习题6.3附录IPeano曲线附录II关于e的超越性主要参考书目
2023/11/14 16:30:22 61.57MB 数学分析 刘德祥 刘绍武 冯立新
1
共 360 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡