微电网在配电网中的优化布置与定容问题是智能电网发展面临的重要问题,为此同时考虑了有功网损和电压改善程度2个重要指标,将微电网接入智能配电网的配置问题转化为同时含有连续变量(微电网的接入容量)和离散变量(微电网的接入位置)的多目标非线性优化问题,并结合具有量子行为的粒子群优化算法和二进制粒子群优化算法进行求解。
算例结果验证了该方法的有效性,可对微电网在规划阶段的选址和定容提供参考。
2024/11/5 13:31:17 428KB 智能配电网
1
PeterAFritzson算是modelica教材之父了吧,他第一本教材900多页,这本相对易入门,能找到的估计不多。
2024/11/4 3:11:54 1.55MB modelica
1
只要给出YUV格式(典型的如4:2:0)的源文件和解码后YUV文件就可以算出其PSNR。
很方便,值得推荐。
2024/11/3 16:27:03 88KB PSNR HEVC H.264
1
Matlab遗传算法优化SVM的参数算范例子,主要调C、gamma
2024/11/2 12:54:07 4KB GASVM
1
本书面向应用与编程设计、在参考国内外论著的基础上,结合作者自己的研究成果撰写。
内容上由浅人深,第一章介绍了GNSS软件接收机的研究背景和各种卫星导航系统。
第二章介绍了信号处理的一些相关概念。
第三章介绍了卫星运动的基本理论。
第四章研究GNSS信号,包括伪随机码信号、导航电文,着重以GPS和Galileo系统为例进行讨论。
第五章研究了GNSS接收机的前端技术,包括天线和信号下变频原理。
第六章探讨卫星信号的捕获技术。
第七章讨论卫星信号的跟踪、解调和伪距计算。
第八章探讨导航定位解算方法。
第九章简要介绍了GNSS干扰和抗干扰技术。
第十章为实用编程实践。
  本书结合最新的有关研究成果,以便读者能参考本书获得较全面的知识。
当然,也不可能面面俱到,读者在阅读本书时,需要有数字信号处理、自动控制以及卫星导航的相关知识。
给出了Matlab源程序以及c++源程序,可帮助相关研究人员加快研究进度。
2024/11/1 2:42:01 6.04MB GPS 接收机
1
关基安全防护能力评价方法,2020年的征求意见,算是比较详细的关键相关评估方法征求意见
1
基于android的行人轨迹算法代码,通过磁力计,加速度,陀螺仪解算位置信息
2024/10/28 20:42:06 7.59MB PDR
1
显示器色域计算机和对应表格,可以算出各种显示器的色域值,适合美工企划
2024/10/28 18:41:45 680KB 显示器色域测试软件和计算器
1
对于文法EE+T|E–T|TTT*F|T/F|FF(E)|i使用自下而上分析法的一种来进行构造算法目前学过的自下而上分析法有1、算符优先分析法(需要先来判断文法是否为算符优先文法)2、LR(0)分析法3、SLR(1)分析法该程序的功能为,给定输入,程序按照先后顺序将使用的产生式输出。
如,输入25.6*14.5+2(首先经过词法分析,将其转化为i*i+i),将在规约过程中使用到的产生式依次输出出来。
2024/10/28 9:46:23 20KB 编译原理 SLR(1)
1
《无陀螺捷联式惯性导航系统》介绍了无陀螺捷联式惯性导航系统(以下文中均称为惯导系统)的原理、组成、特点及加速度计安装方案;
详细推导了各种安装方案下无陀螺捷联惯导系统的导航方程;
给出了六加速度计和九加速度计等各种方案下无陀螺捷联惯导系统角速度解算方程;
推导了无陀螺捷联惯导系统力学编排方程;
分析了无陀螺捷联惯导系统误差源及误差传播特性:给出了误差补偿方法及滤波方法;
对无陀螺捷联惯导系统的仿真程序作了介绍,给出了仿真实例。
目录第1章引言1.1惯性技术的发展概况1.2惯性导航系统的发展1.3无陀螺捷联惯导系统的发展概况第2章载体角速度的解算方法2.1坐标系的定义及坐标变换2.2载体非质心处的比力方程2.3九加速度计安装方案一的载体角速度解算2.4九加速度计安装方案二的载体角速度解算2.5六加速度计安装方案的载体角速度解算第3章力学编排方程3.1姿态方向余弦矩阵、姿态角、姿态角速度的解算3.2载体在导航系中的地速和位置的解算3.3纬度、经度和目标方向角的解算3.4高度通道的解算第4章无陀螺捷联惯导系统误差分析4.1无陀螺捷联惯导系统的误差源4.2加速度计的数学模型及其误差补偿4.3载体角速度计算值的残余误差分析4.4载体对地线加速度的计算误差分析4.5无陀螺捷联惯导系统误差传播特性第5章无陀螺捷联惯导系统数学仿真5.1仿真说明5.2仿真模型的结构5.3仿真算例参考文献
2024/10/25 10:17:16 1.59MB 捷联惯导
1
共 997 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡