基于matlab实现的非局部均值滤波器,基于matlab实现的非局部均值滤波器
2023/8/31 16:30:05 3KB matlab filter picture
1
CA_CFARGO_CFAR SO_CFAR,均值类cfar检测程序
2023/8/27 17:36:13 72KB matlab 君之类CFAR CFAR
1
设计要求:产生等概率且相互独立的二进制序列,画出波形;
产生均值为0,方差为1的加性高斯随机噪声;
3、进行8PSK调制,画出波形;
进行蒙特卡罗分析;
5、解调8PSK,画出眼图。
1
基于模型:基于统计模型估算效果,对比和均值
2023/8/22 20:19:01 1.64MB r estimate marginal-effects predict
1
数据科学正在快速发展成所有行业开发人员和管理人员的关键技能,它看起来也十分有趣。
但是,它非常复杂,虽有许多工程和分析工具助力,却也难清楚掌握现在做得对不对,哪里是不是有陷阱。
在本文中,我们解释了如何发挥数据科学的作用,理解哪里需要它,哪里不需要它,以及如何令它为你产生价值,如何从先行者那里获得有用的经验。
这是“GettingAHandleOnDataScience”系统文章中的一部分,你可以通过此RSS予以订阅。
大多数类型的机器学习项目归根结底通常是使用监督式学习方式进行分类或回归。
特征工程是大多数机器学习过程中的一个关键组成部分。
像K均值(K-means)之类无人监督式的学习算法能用于你事前
2023/8/22 14:53:45 372KB 机器学习入门
1
34行MATLAB代码实现k均值聚类,包含展示聚类成功后的散点图。
2023/8/15 7:37:31 1KB MATLAB 聚类 K均值 kmeans
1
线性光谱聚类(LSC)的超像素分割算法,该算法可以生成具有低计算成本的紧凑且均匀的超像素。
基本上,基于测量图像像素之间的颜色相似性和空间接近度的相似性度量,采用超像素分割的归一化切割公式。
然而,代替使用传统的基于特征的算法,我们使用核函数来近似相似性度量,导致将像素值和坐标明确映射到高维特征空间。
我们证明,通过适当地加权该特征空间中的每个点,加权K均值和归一化切割的目标函数共享相同的最佳点。
因此,通过在所提出的特征空间中迭代地应用简单的K均值聚类,可以优化归一化切割的成本函数。
LSC具有线性计算复杂性和高内存效率,并且能够保留图像的全局属性。
实验结果表明,LSC在图像分割中的几种常用评估度量方面表现出与现有技术的超像素分割算法相同或更好的性能。
2023/8/13 15:12:13 9.55MB matlab
1
《基于fpga的嵌入式图像处理系统设计》详细介绍了fpga(fieldprogrammablegatearray,现场可编程门阵列)这种新型可编程电子器件的特点,对fpga的各种编程语言的发展历程进行了回顾,并针对嵌入式图像处理系统的特点和应用背景,详细介绍了如何利用fpga的硬件并行性特点研制开发高性能嵌入式图像处理系统。
作者还结合自己的经验,介绍了研制开发基于fpga的嵌入式图像处理系统所需要的正确思路以及许多实用性技巧,并给出了许多图像处理算法在fpga上的具体实现方法以及多个基于fpga实现嵌入式图像处理系统的应用实例。
  《基于fpga的嵌入式图像处理系统设计》对fpga技术的初学者以及已经具有比较丰富的设计经验的读者来说都有很好的参考价值,也将为从事基于fpga的嵌入式系统开发和应用的软硬件工程师和科研人员提供一本比较系统、全面的学习材料。
目录1图像处理1.1基本定义1.2图像形成1.3图像处理操作1.4应用实例1.5实时图像处理1.6嵌入式图像处理1.7串行处理1.8并行性1.9硬件图像处理系统2现场可编程门阵列2.1可编程逻辑器件2.1.1fpga与asic2.2fpga和图像处理2.3fpga的内部2.3.1逻辑器件2.3.2互连2.3.3输入和输出2.3.4时钟2.3.5配置2.3.6功耗2.4fpga产品系列及其特点2.4.1xilinx2.4.2altera2.4.3lattice半导体公司2.4.4achronix2.4.5siliconblue2.4.6tabula2.4.7actel2.4.8atmel2.4.9quicklogic2.4.10mathstar2.4.11cypress2.5选择fpga或开发板3编程语言3.1硬件描述语言3.2基于软件的语言3.2.1结构化方法3.2.2扩展语言3.2.3本地编译技术3.3visual语言3.3.1行为式描述3.3.2数据流3.3.3混合型3.4小结4设计流程4.1问题描述4.2算法开发4.2.1算法开发过程4.2.2算法结构4.2.3fpga开发问题4.3结构选择4.3.1系统级结构4.3.2计算结构4.3.3硬件和软件的划分4.4系统实现4.4.1映射到fpga资源4.4.2算法映射问题4.4.3设计流程4.5为调整和调试进行设计4.5.1算法调整4.5.2系统调试5映射技术5.1时序约束5.1.1低级流水线5.1.2处理同步5.1.3多时钟域5.2存储器带宽约束5.2.1存储器架构5.2.2高速缓存5.2.3行缓冲5.2.4其他存储器结构5.3资源约束5.3.1资源复用5.3.2资源控制器5.3.3重配置性5.4计算技术5.4.1数字系统5.4.2查找表5.4.3cordic5.4.4近似5.4.5其他方法5.5小结6点操作6.1单幅图像上的点操作6.1.1对比度和亮度调节6.1.2全局阈值化和等高线阈值化6.1.3查找表实现6.2多幅图像上的点操作6.2.1图像均值6.2.2图像相减6.2.3图像比对6.2.4亮度缩放6.2.5图像掩模6.3彩色图像处理6.3.1伪彩色6.3.2色彩空间转换6.3.3颜色阈值化6.3.4颜色校正6.3.5颜色增强6.4小结7直方图操作7.1灰度级直方图7.1.1数据汇集7.1.2直方图均衡化7.1.3自动曝光7.1.4阈值选择7.1.5直方图相似性7.2多维直方图7.2.1三角阵列7.2.2多维统计信息7.2.3颜色分割7.2.4颜色索引7.2.5纹理分析8局部滤波器8.1缓存8.2线性滤波器8.2.1噪声平滑8.2.2边缘检测8.2.3边缘增强8.2.4线性滤波器技术8.3非线性滤波器8.3.1边缘方向8.3.2非极大值抑制8.3.3零交点检测8.4排序滤波器8.4.1排序滤波器的排序网络8.4.2自适应直方图均衡化8.5颜色滤波器8.6形态学滤波器8.6.1二值图像的形态学滤波8.6.2灰度图像形态学8.6.3颜色形态学滤波8.7自适应阈值分割8.7.1误差扩散8.8小结9几何变换9.1前向映射9.1.1可分离映射9.2逆向映射9.3插值
2023/8/9 21:49:08 53.81MB FPGA 嵌入式 图像处理
1
基于MFC界面设计的图像中值、均值滤波处理,实现了图像的打开及其修改再现
2023/8/3 6:54:07 1.84MB 中值,均值滤波
1
均值漂移算法meanshiftTrack一、实验内容完成基于MeanShift的目标跟踪算法,红框标出目标区域实现实时追踪。
二、算法原理1.在当前帧,计算候选目标的特征2.计算候选目标与初始目标的相似度3.计算权值4.利用MeanShift算法,计算目标新位置在这里插入图片描述5.若新目标中心需位于原目标中心附近,则停止,否则转步骤2三、思路流程截取跟踪目标矩阵rect;
求取跟踪目标的加权直方图hist1;
读取视频序列中的一帧,先随机取一块与rect等大的矩形,计算加权直方图hist2;
计算两者比重函数,如果后者差距过大,更新新的矩阵中心Y,进行迭代(MeanShift是一种变步长可以迅速接近概率密度峰值的方法),直至一定条件(移动步长平方和大于0.5或超过20次迭代)后停止。
2023/8/2 9:24:56 187.81MB DIA 数字图像分析 均值漂移 目标跟踪
1
共 294 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡