汇编的递归子程序实现阶乘部分代码DATAsegmenttishidb'intputN(0~7):$'jieguodb0dh,0ah,'jieguois:$'quitdb0dh,0ah,'pressanykeytoexit...$'DATAendsSTACKsegmentdb100dup(?)STACKendsCODEsegmentassumecs:CODE,ss:STACK,ds:DATAmainprocfarstart:movax,DATAmovds,ax;初始化数据段movah,09hleadx,tishi;输出提示int21hxorax,ax;清零movah,01hint21h;键盘输入数据movah,00handal,0fh;转化为非压缩的BCD码callsubproc;调用子过程movbx,dxmovah,09h;输出提示leadx,jieguoint21hmovax,bxcalldisplay;调用子过程movah,09hleadx,quit;输出提示。








2025/6/27 13:27:42 4KB 递归 算法 汇编
1
在多分布式电源(distributedgenerations,DGs)并联系统中,通常采用传统下垂控制实现负荷分配。
由于线路阻抗和本地负荷的影响,传统下垂控制会产生较大的功率分配误差。
为提高功率分配的精确性,提出了一种自动调节下垂系数的控制策略。
各逆变器在传统P-V下垂控制下,将输出有功功率信息送到中央控制器,计算给定功率,并返回给各逆变器本地控制器,通过PI调节器自动调节各自的P-V下垂系数。
仿真和实验结果验证了该策略的可行性。
1
格式为中国知网的标准文献阅读格式:用CAJView软件就可以很方便的浏览了!本文设计了一种适于对声码器输出码流进行前向纠错编码的半规则化低密度奇偶校验码(LD-PC码)。
该低密度奇偶校验码具有编、译码简单,存储量少,易于硬件实现等特点。
同时对汉明码、卷积码、低密度奇偶校验码在AWGN信道下的传输性能进行了仿真比较。
结果表明,长度适合的LDPC码误码性能超过汉明码、卷积码。
1
微型计算机控制技术(于海生)课件值得看看!第一章 绪论1. 什么是计算机控制系统?计算机控制系统就是利用计算机来实现生产过程自动控制的系统。
2. 计算机控制系统的工作原理(过程)可归纳为几步?(1)实时数据采集;
(2)实时控制决策;
(3)实时控制输出3. 熟悉计算机控制系统的组成。
计算机控制系统由工业控制机和生产过程两大部分组成。
工业控制机是指按生产过程控制的特点和要求而设计的计算机,它包括硬件和软件两部分。
生产过程包括被控对象、测量变送、执行机构、电器开关等装置。
4. 熟悉计算机控制系统的典型形式。
(1)操作指导控制系统;
(2)直接数字控制系统;
(3)监督控制系统;
(4)分散型控制系统;
(5)现场总线控制系统。
5. 了解工业控制机的组成结构和特点。
工业控制机的组成:包括硬件和软件两部分。
硬件包括主机板、内部总线和外部总线、任-机接口、系统支持板、磁盘系统、通信接口、输入输出通道。
软件包括系统软件、支持软件和应用软件。
工业控制机的特点:(1)可靠性高和可维修性好;
(2)环境适应性强;
(3)控制的实时性好;
(4)完善的输入输出通道;
(5)丰富的软件;
(6)适当的计算机精度和运算速度。
2025/6/26 20:18:28 10.6MB 微型计算机控制技术 于海生 ppt
1
通过stm32f103读取ADXL345加速度传感器的值,用模拟IIC通信协议,最后用串口换算成角度输出,亲自测试可用
2025/6/26 12:19:21 2.12MB stm32 ADXL345 IIC
1
1、本资源核心为.cpp源代码,利用OpenCV实现人脸及眼睛鼻子嘴巴等五官的检测与识别。
2、压缩包内包含训练好的人脸等数据,存放在xml文件夹中。
3、该项目可以识别检测出人脸和五官的大小及位置信息,并一并输出,内附Lena图及明星图识别范例。
2025/6/26 4:21:44 1.73MB OpenCV 人脸识别 眼睛识别 五官识别
1
本教材介绍了五个方面的内容:MOS器件基本原理以及主要的特性,VLSI中逻辑结构的主要设计方法,用于VLSI系统的模拟集成单元设计方法,VLSI的测试问题与相关技术,VLSI设计系统及其组成。
涉及了五个方面的基础知识:MOS器件基础知识,半导体工艺基础知识,集成电路版图基础知识,逻辑、电路设计基础知识和CAD基础知识。
《VLSI设计基础》作为VLSI设计基础教材,注重相关理论的结论和知识的应用。
可作为本科生教材和研究生参考书。
第1章VLSI设计基础概述1.1VLSI设计技术基础与主流制造技术1.2VLSI设计方法与设计技术1.3新技术对VLSI的贡献1.4ASIC和VLSI1.5SOC1.6VLSI的版图结构和设计技术1.6.1VLSI的版图总体结构1.6.2VLSI版图的内部结构第2章MOS器件与工艺基础2.1MOS晶体管基础2.1.1MOS晶体管结构及基本工作原理2.1.2MOS晶体管的阈值电压VT2.1.3MOS晶体管的电流-电压方程2.1.4MOS晶体管的平方律转移特性2.1.5MOS晶体管的跨导gm2.1.6MOS晶体管的直流导通电阻2.1.7MOS晶体管的交流电阻2.1.8MOS晶体管的最高工作频率2.1.9MOS晶体管的衬底偏置效应2.1.10CMOS结构2.2CMOS逻辑部件2.2.1CMOS倒相器设计2.2.2CMOS与非门和或非门的结构及其等效倒相器设计方法2.2.3其他CMOS逻辑门2.2.4D触发器2.2.5内部信号的分布式驱动结构2.3MOS集成电路工艺基础2.3.1基本的集成电路加工工艺2.3.2CMOS工艺的主要流程2.3.3Bi-CMOS工艺技术第3章工艺与设计接口3.1工艺对设计的制约与工艺抽象3.1.1工艺对设计的制约3.1.2工艺抽象3.2设计规则3.2.1几何设计规则3.2.2电学设计规则3.2.3设计规则在VLSI设计中的应用第4章晶体管规则阵列设计技术4.1晶体管阵列及其逻辑设计应用4.1.1全NMOS结构ROM4.1.2ROM版图4.2MOS晶体管开关逻辑4.2.1开关逻辑4.2.2棒状图4.3PLA及其拓展结构4.3.1“与非-与非”阵列结构4.3.2“或非-或非”阵列结构4.3.3多级门阵列(MGA)4.4门阵列4.4.1门阵列单元4.4.2整体结构设计准则4.4.3门阵列在VLSI设计中的应用形式4.5晶体管规则阵列设计技术应用第5章单元库设计技术5.1单元库概念5.2标准单元设计技术5.2.1标准单元描述5.2.2标准单元库设计5.2.3输入、输出单元(I/OPAD)5.3积木块设计技术5.4单元库技术的拓展第6章微处理器6.1系统结构概述6.2微处理器单元设计6.2.1控制器单元6.2.2算术逻辑单元(ALU)6.2.3乘法器6.2.4移位器6.2.5寄存器6.2.6堆栈6.3存储器组织6.3.1存储器组织结构6.3.2行译码器结构6.3.3列选择电路结构第7章测试技术和可测试性设计7.1VLSI可测试性的重要性7.2测试基础7.2.1内部节点测试方法的测试思想7.2.2故障模型7.2.3可测试性分析7.2.4测试矢量生成7.3可测试性设计7.3.1分块测试7.3.2可测试性的改善设计7.3.3内建自测试技术7.3.4扫描测试技术第8章模拟单元与变换电路8.1模拟集成电路中的基本元件8.1.1电阻8.1.2电容8.2基本偏置电路8.2.1电流偏置电路8.2.2电压偏置电路8.3放大电路8.3.1单级倒相放大器8.3.2差分放大器8.3.3源极跟随器8.3.4MOS输出放大器8.4运算放大器8.4.1两级CMOS运放8.4.2CMOS共源-共栅(cascode)运放8.4.3带有推挽输出级的运放8.4.4采用衬底晶体管输出级的运放8.5电压比较器8.5.1电压比较器的电压传输特性8.5.2差分电压比较器8.5.3两级电压比较器8.6D/A、A/D变换电路8.6.1D/A变换电路8.6.2A/D变换电路8.
2025/6/24 15:01:24 12.57MB VLSI
1
用new和delete运算符动态分配内存空间的方法编写程序。
从键盘输入33整型数组的数据,并计算出所有元素之和,打印出最大值和最小值。
输入输出要用流运算符实现。
1
数字幅度调制又称幅度键控(ASK),二进制幅度键控记作2ASK。
2ASK是利用代表数字信息“0”或“1”的基带矩形脉冲去键控一个连续的载波,使载波时断时续地输出。
有载波输出时表示发送“1”,无载波输出时表示发送“0”。
本设计主要采用相乘法来产生2ASK信号,实现2ASK的数字调制,采用相干解调法对2ASK信号进行解调。
2025/6/24 5:14:16 264KB 2ASK 调制 解调
1
STM32F4Discovery上调试通过,数据通过SWO输出,包括气压、温度、海拔,Bosch官方库和STM32CubeMx建立
2025/6/23 8:51:35 2.23MB BMP280 STM32 气压 温度
1
共 1000 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡