机器学习深度学习机器学习深度学习机器学习深度学习机器学习深度学习机器学习深度学习机器学习深度学习机器学习深度学习机器学习深度学习机器学习深度学习机器学习深度学习机器学习深度学习机器学习深度学习机器学习深度学习
2024/8/24 2:23:40 40.81MB 机器学习 深度学习 AI
1
台大李宏毅教授深度学习2017课程的作业ppt,是对应课程的官方作业
2024/8/13 4:35:33 14.76MB deep learnin
1
反向传播算法是人工神经网络训练时采用的一种通用方法,在现代深度学习中得到了大规模的应用。
全连接神经网络(多层感知器模型,MLP),卷积神经网络(CNN),循环神经网络(RNN)中都有它的实现版本。
算法从多元复合函数求导的链式法则导出,递推的计算神经网络每一层参数的梯度值。
算法名称中的“误差”是指损失函数对神经网络每一层临时输出值的梯度。
反向传播算法从神经网络的输出层开始,利用递推公式根据后一层的误差计算本层的误差,通过误差计算本层参数的梯度值,然后将差项传播到前一层
1
深度学习常用网络pytorch代码整理合集包括AlexNet,LeNet,NiNet,ResNet,VGGNet
1
深度学习NVIDIAcudnn7.4.1.5适用于64位win10的CUDA10.0版本
2024/8/6 20:23:24 208.93MB cudnn7.4.1.5 cuda10.0
1
乳腺癌病理图像的自动分类具有重要的临床应用价值。
基于人工提取特征的分类算法,存在需要专业领域知识、耗时费力、提取高质量特征困难等问题。
为此,采用一种改进的深度卷积神经网络模型,实现了乳腺癌病理图像的自动分类;同时,利用数据增强和迁移学习方法,有效避免了深度学习模型受样本量限制时易出现的过拟合问题。
实验结果表明,该方法的识别率可达到91%,且具有较好的鲁棒性和泛化性
2024/8/3 5:11:41 632KB 深度学习 图像识别
1
深度学习股票预测代码lstm+数据.rar深度学习股票预测代码lstm+数据.rar
2024/7/25 20:21:43 2.46MB lstm
1
深度学习-吴恩达-deeplearning-pdf-文字版
2024/7/25 14:49:22 25.66MB 深度学习
1
android端,基于openCV与深度学习,实现快速准确的车牌识别。
平均识别耗时350ms左右,采集100样本识别准确率达到95%。
识别过程:1、使用openCV确定车牌左右、上下区域;
2、车牌倾斜判断与校正;
3、滑动切割字符;
4、深度学习对每个字符进行识别
2024/7/21 21:39:02 24.82MB 车牌识别
1
共 634 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡