CNN卷积神经收集的MATLAB法度圭表标准,及表明
2023/5/7 16:32:25 14KB CNN MATLAB 代码注解
1
本资源源于天津大学开设的媒体盘算课程,搜罗三个名目(BOF+SIFT图片搜查、svm图片多分类以及cnn手势图片识别),报告以及READEME,具备未必的参考价钱
2023/4/27 17:02:51 33.45MB 媒体计算 天津大学 大作业
1
python实现的约莫的卷积神经收集
2023/4/26 7:51:16 208.16MB python CNN
1
深度学习之卷积神经收集CNN做手写体识另外VS代码。
反对于linux版本以及VS2012版本。
tiny-cnn:AC++11implementationofconvolutionalneuralnetworks========tiny-cnnisaC++11implementationofconvolutionalneuralnetworks.designprinciple-----*fast,withoutGPU98.8%accuracyonMNISTin13minutestraining(@Corei7-3520M)*headeronly,policy-baseddesignsupportednetworks-----###layer-types*fully-connectedlayer*convolutionallayer*averagepoolinglayer###activationfunctions*tanh*sigmoid*rectifiedlinear*identity###lossfunctions*cross-entropy*mean-squared-error###optimizationalgorithm*stochasticgradientdescent(with/withoutL2normalization)*stochasticgradientlevenbergmarquardtdependencies-----*boostC++library*IntelTBBsamplecode------```cpp#include"tiny_cnn.h"usingnamespacetiny_cnn;//specifyloss-functionandoptimization-algorithmtypedefnetworkCNN;//tanh,32x32input,5x5window,1-6feature-mapsconvolutionconvolutional_layerC1(32,32,5,1,6);//tanh,28x28input,6feature-maps,2x2subsamplingaverage_pooling_layerS2(28,28,6,2);//fully-connectedlayersfully_connected_layerF3(14*14*6,120);fully_connected_layerF4(120,10);//connectallCNNmynet;mynet.add(&C1);mynet.add(&S2);mynet.add(&F3);mynet.add(&F4);assert(mynet.in_dim()==32*32);assert(mynet.out_dim()==10);```moresample,readmain.cppbuildsampleprogram------###gcc(4.6~)withouttbb./wafconfigure--BOOST_ROOT=your-boost-root./wafbuildwithtbb./wafconfigure--TBB--TBB_ROOT=your-tbb-root--BOOST_ROOT=your-boost-root./wafbuildwithtbbandSSE/AVX./wafconfigure--AVX--TBB--TBB_ROOT=your-tbb-root--BOOST_ROOT=your-boost-root./wafbuild./wafconfigure--SSE--TBB--TBB_ROOT=your-tbb-root--BOOST_ROOT=your-boost-root./wafbuildoreditinlude/co
2023/4/7 20:45:08 10.29MB 深度学习 卷积神经网络 CNN VS
1
python实现的卷积神经收集CNN,无框架,python实现的卷积神经收集CNN,无框架
2023/4/4 0:30:53 1.58MB CNN 卷积神经网络 python
1
验证码识别,文本识别收集-CRNN(CNN+GRU/LSTM+CTC),含部份数据集请怪异博客https://blog.csdn.net/okfu_DL/article/details/90379583使用
2023/3/28 0:41:18 32.85MB 验证码识别
1
过滤器相似度CIFAR10模型砝码使用链接下载权重(您必须手动下载和提取)。
要将路径设置为下载的weights文件夹,请在vgg.py指定path_to_state_dict。
依存关系通过运行以下命令安装依赖项:pipinstall-rrequirements.txt选项:-net-架构的选择(默认:resnet18)-dataset选择数据集(默认值:cifar10)-tr-batch训练批次大小(默认值:512)-val-batch验证批次大小(默认值:512)-lr学习率(默认值:0.1)-wd权重衰减(默认值:5e-4)-epochs要训​​练的时期数(默认值:300)-cpu-cpu标志-reinit分集丢失使用标志-mode-在转移和默认训练之间选择如何运行:pythontrain.py-lr0.1-gpu-dat
2023/3/21 5:28:19 46KB Python
1
卷积神经网络-Codealong介绍在此代码中,我们将重新研究以前的圣诞老人图像分类示例。
为此,我们将审查从嵌套目录结构中加载数据集并构建基线模型。
从那里,我们将构建一个CNN并演示其在图像识别任务上的改进功能。
建议您运行单元格,以便进一步探索变量并调查代码片段本身。
但是,请注意,某些细胞(尤其是稍后训练的细胞)可能需要几分钟才能运行。
(在Macbookpro上,整个笔记本电脑大约需要15分钟才能运行。
)目标你将能够:使用图像数据生成器从分层文件结构加载图像解释为什么训练神经网络时可能会增加图像数据在训练神经网络之前将数据增强应用于图像文件使用Keras构建CNN正确存储图像分析图像数据时,文件管理很重要。
我们将再次使用圣诞老人图像,但是这次将它们存储在两个文件夹中:santa和not_santa。
我们现在想使用train,validation
2023/3/19 7:39:44 344.12MB JupyterNotebook
1
本资源为,基于CNN的人脸识别程序中,训练过程中所运用的样本图像
2023/3/16 8:20:49 29.96MB 样本图像
1
1万张数字验证码数据集,用于深度学习里面CNN网络辨认训练
2023/3/13 8:34:11 71.25MB 数据集 深度学习 CNN
1
共 213 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡