EtherCAT规范,ETG1000系列,中文版,共6部分:第一部分:规范;
第二部分:物理层服务和协议规范;
第三部分:数据链路层服务定义;
第四部分:数据链路层协议规范;
第五部分:使用层服务定义;
第六部分:使用层协议规范;
2023/2/4 18:54:53 5.74MB Ethercat ETG
1
《ISO15764-2004_Roadvehicles-Extendeddatalinksecurity》道路车辆—扩展数据链路安全性,摘要:ISO15764:2004描述了数据链接协议的扩展,用于增强通过公路车辆中使用的通信网络连接的电子控制单元(ECU)之间数据传输的安全性。
它基于包括加密,数字签名和消息认证代码(MAC)在内的加密方法。
它提供了一种服务,以将ECU建立为彼此之间的受信方,并防御特定要挟。
它适用于能够存储和处理机密数据的ECUs对之间的所有数据链接,从而使未经授权的第三方无法访问它。
提供参数以使能够选择数据链路中的安全级别。
2023/1/25 0:44:55 1.9MB ISO15764 扩展数据链路安全
1
802.11Wi-Fi网络中,接入点(AP)的介质接入控制(MAC)协议分配给它的竞争用户(STA)相等的传输机会而不考虑的用户的链路质量的差异,这就会导致有着不同链路质量的竞争节点获得相等的吞吐量(基于吞吐量的公平性),从而降低网络整体的功能。
为了克服这一功能异常问题,基于比例公平的优化由于其吞吐量增强能力已经引起广大的关注。
在本文中,提出了一种基于邻近点算法的比例公平优化方法,每个竞争节点根据其链路质量的差异使用不同的接入概率来访问接入点。
数值结果验证了我们的理论分析,Wi-Fi网络的吞吐量可以通过接入概率的优化得到显着改善。
1
第一章1、异构网络互连的问题是什么?试举例说明。
举例来说,用户A可以通过接入使用以太网技术的校园网,与另外一个使用电话点对点拨号上网的用户B之间进行邮件通信,同时还和一个坐在时速300公里的高铁上的使用WCDMA手机进行3G上网的用户C进行QQ聊天。
但问题的关键在于,这些采用不同技术的异构网络之间存在着很大差异:它们的信道访问方式和数据传送方式不同,其帧格式和物理地址方式也各不相同。
2、请描述图1-2中,用户A和用户C进行QQ聊天似的数据转换和传输过程。
用户A的主机将发送的邮件数据先封装到IP数据包中,再封装到以太帧中,发送到其接入的以太网中,并到达路由器R1。
路由器R1从以太帧中提取IP数据包,根据目标IP地址选择合适的路径,再将其封装成SDH帧,转发到因特网主干网中,经过因特网主干网中若干路由器的选路和转发,到达路由器R3路由器R3从SDH帧中提取IP数据包,转换成WCDMA帧,发送到3G网络中,到达用户C的主机。
用户C的主机提取出IP数据包,最总交付到上层的邮件应用程序,显示给用户C。
4、画出TCP/IP模型和OSI模型之间的层次对应关系,并举例TCP/IP模型中各层次上的协议。
应用层:应用层对应OSI模型的上面三层。
应用层是用户和网络的接口,TCP/IP简化了OSI的会话层和表示层,将其融合到了应用层,使得通信的层次减少,提高通信的效率。
应用层包含了一些常用的、基于传输层的网络应用协议,如Telnet、DNS、DHCP、FTP、SMTP、POP3、HTTP、SNMP、RIP、BGP等。
传输层:传输层位于IP层之上,为两台主机上的应用程序提供端到端的通信服务。
目前,应用最广泛的传输层协议是TCP和UDP。
网络层:网络层又称为网际层、互联网层或IP层,是TCP/IP模型的关键部分。
该层主要完成IP数据包的封装、传输、选路和转发,使其尽可能到达目的主机。
该层包括的协议主要有IP、ARP、RARP、ICMP和IGMP,其中,IP协议是网络层的核心。
网络接口层:网络接口层对应OSI模型中的物理层和数据链路层,只要底层网络技术和标准支持数据帧的发送和接收,就可以作为TCP/IP的网络接口,包括前面提到的各种局域网、城域网、广域网技术,如以太网、电话拨号、3G网络等。
......
2023/1/13 21:50:30 44.23MB 杭电研一 徐明 高级计算机 网络
1
《通信网络基础》是普通高等教育“十五”国家级规划教材,主要介绍通信网络的基本原理。
全书共分7章。
第1章主要讨论通信网络的基本构成和协议体系、本书所需的数学基础及通信网络的基本理论问题;
第2章详细讨论了链路层、网络层和传输层的端到端传输协议:包括组帧、差错检测、自动请求重发(ARQ)、协议的初始化、差错控制和流量控制等;
第3章首先描述了单个排队系统的基本时延功能,接着描述了多个排队队列组成的网络的时延功能,给出的分析模型是常用的网络时延模型
2023/1/10 1:34:51 2.58MB 网络
1
使用C言语实现原始套接字从数据链路层到应用层的操作,Linux系统
2016/5/26 8:54:23 5KB 原始套接字 UDP 数据链路层 C语言
1
由IEC61158-4-32010翻译过来,大部分内容已校对,带有书签方便阅读。
如果想精确全面的理解协议,请参考英文原文档
2020/10/13 17:41:01 6.35MB 现场总线 PROFIBUS IEC61158
1
目录一、DL/T645-2007通讯协议简介二、数据链路层格式说明三、数据标识说明四、(应用层)命令、前往格式说明五、命令字、特征字、错去信息字说明六、DTTD三相多功能电表应用数据标识七、负荷记录传输格式八、通讯功能实现实例
2016/11/4 14:29:04 3.85MB 部颁 645-2007
1
基于CST和ADS的PCB板级射频链路仿真。
本仿真流程属于傻瓜式,无需本人做多余的设置。
在确认板材特性的情况下可以做到仿真smith原图位置非常准。
但是插损至今无法很好的仿真,毕竟厂家也可能不知道这个材料的具体参数。
2019/10/8 13:17:02 1.89MB CST ADS
1
编程实现简单网络拓扑的链路形态路由算法。
结点之间的连接关系固定;
链路开销可以由用户设定。
链路形态算法的实现:
2020/6/14 21:27:32 6KB 路由算法
1
共 204 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡