KS-650型电烤箱,容量8L·600W,220V/50HZ供电·温度可控可调·温度范围0-100℃·精度±0.5℃·具有三位数字显示功能
2024/12/4 18:49:06 123KB 单片机
1
简述了人工神经网络BP模型,以Excel为技术平台,创建了人工神经网络BP预测模型。
应用该模型预测了吉林省农安水文站枯季径流量。
结果表明,预测结果合理,精度较高;模型操作简便,有进一步推广价值。
2024/12/1 6:45:25 766KB 神经网络 枯季径流量预测
1
极限学习机matlab程序。
程序里包括样本训练、测试、精度、隐层神经元个数、激活函数选取。
2024/12/1 2:16:10 53KB 程序
1
基于stm32电子秤设计,应变片加ad转换得到物体的重量,触摸屏直接输入物体的单价,stm32内部自行运算,使用的是pid提高精度
2024/11/30 9:29:39 14.68MB 电子秤 触摸屏 应变片
1
路径规划R_area是图像的大小默认为256*256R_windows=40机器人移动的窗口大小B_place障碍物存放的位置设置精度为5度距离中心位置是随机的得出障碍物和可行走区间的直方图保存下来角度信息和距离信息存放在val,B_Pos,B_d,Free_Pos中...
2024/11/27 4:04:16 7KB path plannin
1
针对传感器在信号采集时易受噪声干扰影响检测精度的问题,提出一种基于卡尔曼预测的指定次谐波电流无差拍控制方法.该方法是通过离散傅里叶谐波检测方法检测出电网中指定次谐波含量,建立当前的谐波方程,通过卡尔曼算法预测出下一补偿时刻该次谐波的相位和幅值,从而确定该补偿时刻的指令电流.研究结果表明:卡尔曼算法预测同时可以滤除干扰信号,实现指定次谐波电流的高精度无差拍控制.研究结果突破了传统无差拍控制受噪声干扰的问题,实现了电网中含量较高的5、7次谐波采用单独检测与单独补偿,对提高有源电力滤波器补偿精度具有实际应用价值.
1
ADuM1400/1/2是ADI(Analogdevice,inc)公司推出基于其专利iCoupler磁耦隔离技术的通用型四通道数字隔离器。
iCoupler磁隔离技术是ADI公司的一项专利隔离技术,是一种基于芯片尺寸的变压器隔离技术,它采用了高速CMOS工艺和芯片级的变压器技术。
所以,在性能、功耗、体积等各方面都有传统光电隔离器件(光耦)无法比拟的优势。
由于磁隔离在设计上取消了光电耦合器中影响效率的光电转换环节,因此它的功耗仅为光电耦合器的1/6--1/10,具有比光电耦合器更高的数据传输速率、时序精度和瞬态共模抑制能力。
同时也消除了光电耦合中不稳定的电流传输率,非线性传输,温度和使用寿命等方面的问题。
2024/11/22 21:21:13 856KB adum1400
1
用数理统计方法,推导出波动光学MTF数值计算的误差估计式,它适用于对不同的数值计算方法进行自相关积分所求得的MTF值进行误差估计.本文根据波动光学的基本性质,提出了新的MTF数值计算方法,它具有较高的数值精度,更可观的计算量大大减少.
1
根据提供的文件信息,我们可以将这份“Flux培训资料中文”中的关键知识点整理如下:###Flux培训资料概述####一、模型简介及几何建模本章节主要介绍了如何在Flux软件中创建基本的几何模型,并对不同类型的案例进行了简要说明。
1.**几何建模**:-**仿真目标**:文档中提到了三种不同的仿真场景,分别是静磁场场仿真(Case1)、电流参数化仿真(Case2)和几何参数化仿真(Case3)。
-**几何参数**:为了进行仿真,首先需要定义模型的几何参数。
这些参数用于定义模型的基本形状和尺寸。
-**几何建模步骤**:-**创建对称面**:通过双击symmetry选项来创建对称面,这一步对于简化模型和提高计算效率非常重要。
-**创建几何参数**:通过双击geometricparameter选项,可以定义几何参数,例如长度、宽度等。
-**创建坐标系**:为了准确地定位模型中的各个元素,需要创建合适的坐标系。
这可以通过双击坐标系选项实现。
-**平移变换矢量的创建**:通过双击transformation选项,可以定义平移变换矢量,这对于调整模型的位置非常有用。
-**建立点、线、面、体**:这是几何建模的基础,通过定义点、线、面、体来构建模型的具体形状。
####二、网格剖分这一部分重点讲解了如何将模型分割成更小的单元,即网格剖分,这对于模拟计算至关重要。
-**网格剖分**:在进行电磁场仿真之前,需要将模型划分为更小的网格,以便于软件进行精确的计算。
网格的质量直接影响到仿真的准确性和计算时间。
####三、物理属性本节介绍了如何设定材料的物理属性,这对于模拟结果的准确性至关重要。
-**物理属性设置**:为模型的不同部分指定正确的物理属性,比如磁导率、电导率等,这对于准确模拟电磁行为非常重要。
####四、求解这一环节涉及如何设置求解器参数和执行仿真计算。
-**求解设置**:在这一阶段,需要选择适当的求解器算法,并设定求解参数,如精度要求、迭代次数等。
-**执行仿真**:完成所有准备工作后,启动仿真计算过程,获得模拟结果。
####五、后处理这部分是关于如何分析和可视化仿真结果。
1.**Case1静磁场场仿真**:-这部分针对静磁场场仿真进行了详细的分析和结果展示,可以帮助用户理解静态电磁场的行为。
2.**Case2电流参数化仿真**:-在这个案例中,通过对电流进行参数化处理,研究电流变化对电磁场的影响。
3.**Case3几何参数化仿真**:-这个案例着重探讨了几何参数变化对电磁行为的影响,这对于优化设计具有重要意义。
####六、Flux在国内的技术支持文档还提到了Flux软件在中国的技术支持情况,这对于中国用户来说是非常实用的信息。
这份“Flux培训资料中文”不仅涵盖了Flux软件的基础使用方法,还包括了从几何建模到后处理的完整流程,非常适合初学者入门学习。
通过这份培训资料,学员能够掌握Flux软件的操作技巧,并学会如何利用该软件进行各种电磁场仿真。
2024/11/21 9:24:26 5.67MB Flux
1
matlab程序,将IQ数据转换为频谱,采样率,精度可以配置。
采样率和精度根据IQ数据的实际参数,绘制FFT的点数可以自己配置,2048、4096
2024/11/18 5:53:16 902B IQ FFT 频谱
1
共 960 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡