根据随机变量y及自变量x0,x1...xm-1的n组观测值做线性回归分析,简单实例,有正文,Java实现
2018/8/22 10:38:37 4KB 多元线性回归
1
一个确实可行的C#处理多元回归问题的算法,代码写得比较明朗,需要的同学可以参考一下,有问题欢迎批评指正~
2020/8/22 12:22:30 43KB C#
1
本教材针对多元分析进行了很全面的讲解,包括多元线性回归。
2015/6/20 1:38:58 148.64MB 多元分析 线性回归
1
某些数据可用于SPSS的描述性分析,线性回归分析、方差分析等SPSS操作,数据较规范,因而可多用于练习。
2020/9/23 13:25:33 12KB SPSS数据
1
这是我在《北京交通大学学报》2014年的论文《基于多元线性回归的线性系统形态空间辨识算法》配套MATLAB代码,用来生成论文中的图的。
读者有不明白的,可以联系我。
2021/5/12 17:08:10 103KB SSARX-MLR
1
基于线性回归进行图像插值,恢复受损图像。
言语是python
2015/4/26 22:41:26 1.22MB python 线性回归
1
纯Python3.5代码完成多变量线性回归,参数更新方法采用梯度下降法
2017/10/5 1:43:22 53KB 线性回归
1
多元线性回归MATLAB法式
2018/8/9 8:04:47 745B 多元 回归
1
ThereisanexplosionofinterestinBayesianstatistics,primarilybecauserecentlycreatedcomputationalmethodshavefinallymadeBayesiananalysistractableandaccessibletoawideaudience.DoingBayesianDataAnalysis,ATutorialIntroductionwithRandBUGS,isforfirstyeargraduatestudentsoradvancedundergraduatesandprovidesanaccessibleapproach,asallmathematicsisexplainedintuitivelyandwithconcreteexamples.Itassumesonlyalgebraand‘rusty’calculus.Unlikeothertextbooks,thisbookbeginswiththebasics,includingessentialconceptsofprobabilityandrandomsampling.Thebookgraduallyclimbsallthewaytoadvancedhierarchicalmodelingmethodsforrealisticdata.ThetextprovidescompleteexampleswiththeRprogramminglanguageandBUGSsoftware(bothfreeware),andbeginswithbasicprogrammingexamples,workingupgraduallytocompleteprogramsforcomplexanalysesandpresentationgraphics.Thesetemplatescanbeeasilyadaptedforalargevarietyofstudentsandtheirownresearchneeds.ThetextbookbridgesthestudentsfromtheirundergraduatetrainingintomodernBayesianmethods.Accessible,includingthebasicsofessentialconceptsofprobabilityandrandomsamplingExampleswithRprogramminglanguageandBUGSsoftwareComprehensivecoverageofallscenariosaddressedbynon-bayesiantextbooks-t-tests,analysisofvariance(ANOVA)andcomparisonsinANOVA,multipleregression,andchi-square(contingencytableanalysis).CoverageofexperimentplanningRandBUGScomputerprogrammingcodeonwebsiteExerciseshaveexplicitpurposesandguidelinesforaccomplishment作者从概率统计和编程两方面入手,由浅入深地指点读者如何对实际数据进行贝叶斯分析。
全书分成三部分,第一部分为基础篇:关于参数、概率、贝叶斯法则及R软件,第二部分为二元比例推断的基本理论,第三部分为广义线性模型。
内容包括贝叶斯统计的基本理论、实验设计的有关知识、以层次模型和MCMC为代表的复杂方法等。
同时覆盖所有需要用到非贝叶斯方法的情况,其中包括:t检验,方差分析(ANOVA)和ANOVA中的多重比较法,多元线性回归,Logistic回归,序列回归和卡方(列联表)分析。
针对不同的学习目标(如R、BUGS等)列出了相应的重点章节;
整理出贝叶斯统计中某些与传统统计学可作类比的内容,方便读者快速学习。
本中提出的方法都是可操作的,并且所有涉及数学理论的地方都已经用实际例子非常直观地进行了解释。
由于并不对读者的统计或
2018/9/5 21:06:32 9.93MB 贝叶斯 Bayesian Data Analysis
1
人工智能基础视频教程零基础入门课程第十二章人工智能基础视频教程零基础入门课程,不需要编程基础即可学习,共15章,由于整体课程内容太大,无法一次传输,分章节上传。
第一章人工智能开发及远景引见(预科)第二章线性回归深入和代码实现第三章梯度下降和过拟合和归一化第四章逻辑回归详解和应用第五章分类器项目案例和神经网络算法第六章多分类、决策树分类、随机森林分类第七章分类评估、聚类第八章密度聚类、谱聚类第九章深度学习、TensorFlow安装和实现第十章TensorFlow深入、TensorBoard十一章DNN深度神经网络手写图片识别十二章TensorBoard可视化十三章卷积神经网络、CNN识别图片十四章卷积神经网络深入、AlexNet模型十五章Keras深度学习框架
2022/9/9 0:14:27 351.03MB 人工智能 机器学习 TensorFlow TensorBoard
1
共 137 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡