电流抑制跟踪抑制的PWM逆变器由每一每一的PWM逆变器以及电流滞环组成,其底子抑制方式是用给定的三相正弦信号以及输入的实际电流信号比力,患上到差值抑制功率器件的通断。
2023/4/2 11:44:10 24KB PWM 电流跟踪 滞环控制
1
DDS原理的详尽介绍,DDS是直接数字式频率剖析器(DirectDigitalSynthesizer)的英文缩写,是一项关键的数字化本领。
与传统的频率剖析器相比,DDS具备低资源、低功耗、高分说率以及快捷转换功夫等短处,普及使用在电信与电子仪器规模,是实现配置配备枚举全部字化的一个关键本领。
DDS芯片中首要搜罗频率抑制寄存器、高速相位累加器以及正弦盘算器三个部份(如Q2220)。
频率抑制寄存器能够串行或者并行的方式装载并寄存用户输入的频率抑制码;而相位累加器依据频率抑制码在每一个时钟周期内举行相位累加,患上到一个相位值;正弦盘算器则对于该相位值盘算数字化正弦波幅度(芯片普齐全过查表患上到)。
DDS芯片输入的普通是数字化的正弦波,于是还需经由高速D/A转换器以及低通滤波器才气患上到一个可用的模拟频率信号。
2023/3/26 17:41:04 143KB DDS
1
这是一个经VS测试可用的盘算器,首要实现两大成果,一个是尺度盘算器,首要成果有加、减、乘、除了、求余等运算,别一大成果是迷信盘算器,首要成果有求平方、立方、幂、开方、阶乘、正弦、余弦、正切等
2023/3/22 14:02:46 279KB cal calculator 计算 计算器
1
GSolver软件阐发书,Gsolver光栅方案是一款渺小的光栅结构方案软件,软件具备直不雅的可视化界面,可方案种种光栅结构剖面,如:方波全息光栅,闪灼光栅,正弦、梯形、三角形、三点折线式及另外许多结构光栅等。
它具备残缺的三维矢量代码,仿真盘算精度高,资料残缺,另有全成果的演示版下载试用,可满足您的种种方案申请。
2023/3/21 21:29:37 1.74MB 光栅 Gsolve
1
第一章电路的基本概念和基本定律第二章电路的等效变换第三章电路分析的普通方法第四章电路的基本定理第五章正弦稳态电路分析第六章耦合电感和理想变压器第七章三相电路第九章动态电路的时域分析
1
STM32F407VET.基于DDS用内置DAC实现多种波形(正弦方波三角波锯齿波)输出,支持频率可调(范围1HZ-5MHZ在5MHz下精度大约100khz左右)有自定义波形功能
2023/3/18 11:07:42 16.23MB DDS STM32 MHZ 频率可调
1
本文档介绍了如何使用dsPIC30F数字信号控制器(DigitalSignalController,DSC)控制正弦电流来驱动具有位置传感器的永磁同步电机(PermanentMag-netSynchronousMotor,PMSM)。
电机控制固件使用dsPIC30F外设,而数学运算则由DSP引擎完成。
为充分利用dsPIC30F的特殊DSP运算功能,固件采用C语言编写,只有某些子程序采用汇编语言编写。
2023/3/9 8:17:41 527KB PMSM dsPIC30F
1
VC++实现绘制波形图动态图,类似示波器的界面,信号用正弦信号模拟,可调理显示的幅度档和时间档,可对信号进行暂停观测,可上下左右移动信号波形。
2023/2/19 23:46:28 13.39MB qq
1
STM32f103(SPWM)逆变正弦交流50HZ正弦交流信号。
STM32f103(SPWM)逆变正弦交流50HZ。
根据STM32产生SPWM脉冲来实现输入50HZ的正弦交流信号STM32SPWM逆变
2023/2/7 15:56:50 3.5MB STM32 SPWM 逆变 50HZ
1
利用变分法研究了1+2维超高斯型光束在强非局域非线性介质中的传输特性,得到了1+2维超高斯型光束各参量的近似演化方程、一个临界功率及光束各参量的近似演化规律。
一般情形下,1+2维超高斯型光束在强非局域非线性介质中传输时,其束宽按正弦和余弦规律作周期性振荡变化,当初始功率等于临界功率时,其束宽则保持不变,可以得到稳定的1+2维超高斯型非局域空间光孤子。
另外,经过分析得到临界功率随光束阶次的增大而增大,与相位因子的阶次无关;光孤子的相移快慢与光束阶次、相位因子的阶次、初始功率都有关,但随着光束阶次的升高其次要依赖于光束阶次和初始功率,相位因子的阶次的影响可以忽略。
1
共 181 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡