包括贝叶斯分析,伯努利分析,高斯分析的对同一数据集进行的训练比较,最终得出只有高斯分析训练出的模型能进行正确预测
2023/9/29 14:19:41 12KB 贝叶斯分析
1
本书对数据挖掘的基本算法进行了系统介绍,每种算法不仅介绍了算法的基本原理,而且配有大量例题以及源代码,并对源代码进行了分析,这种理论和实践相结合的方式有助于读者较好地理解和掌握抽象的数据挖掘算法。
全书共分11章,内容同时涵盖了数据预处理、关联规则挖掘算法、分类算法和聚类算法,具体章节包括绪论、数据预处理、关联规则挖掘、决策树分类算法、贝叶斯分类算法、人工神经网络算法、支持向量机、Kmeans聚类算法、K中心点聚类算法、神经网络聚类算法以及数据挖掘的发展等内容。
本书可作为高等院校数据挖掘课程的教材,也可以作为从事数据挖掘工作以及其他相关工程技术工作人员的参考书。
第1章绪论11.1数据挖掘的概念11.2数据挖掘的历史及发展11.3数据挖掘的研究内容及功能51.3.1数据挖掘的研究内容51.3.2数据挖掘的功能61.4数据挖掘的常用技术及工具91.4.1数据挖掘的常用技术91.4.2数据挖掘的工具121.5数据挖掘的应用热点121.6小结14思考题15第2章数据预处理162.1数据预处理的目的162.2数据清理182.2.1填充缺失值182.2.2光滑噪声数据182.2.3数据清理过程192.3数据集成和数据变换202.3.1数据集成202.3.2数据变换212.4数据归约232.4.1数据立方体聚集232.4.2维归约232.4.3数据压缩242.4.4数值归约252.4.5数据离散化与概念分层282.5特征选择与提取302.5.1特征选择302.5.2特征提取312.6小结33思考题33第3章关联规则挖掘353.1基本概念353.2关联规则挖掘算法——Apriori算法原理363.3Apriori算法实例分析383.4Apriori算法源程序分析413.5Apriori算法的特点及应用503.5.1Apriori算法特点503.5.2Apriori算法应用513.6小结52思考题52第4章决策树分类算法544.1基本概念544.1.1决策树分类算法概述544.1.2决策树基本算法概述544.2决策树分类算法——ID3算法原理564.2.1ID3算法原理564.2.2熵和信息增益574.2.3ID3算法594.3ID3算法实例分析604.4ID3算法源程序分析644.5ID3算法的特点及应用724.5.1ID3算法特点724.5.2ID3算法应用724.6决策树分类算法——C4.5算法原理734.6.1C4.5算法734.6.2C4.5算法的伪代码754.7C4.5算法实例分析764.8C4.5算法源程序分析774.9C4.5算法的特点及应用1014.9.1C4.5算法特点1014.9.2C4.5算法应用1014.10小结102思考题102第5章贝叶斯分类算法1035.1基本概念1035.1.1主观概率1035.1.2贝叶斯定理1045.2贝叶斯分类算法原理1055.2.1朴素贝叶斯分类模型1055.2.2贝叶斯信念网络1075.3贝叶斯算法实例分析1105.3.1朴素贝叶斯分类器1105.3.2BBN1125.4贝叶斯算法源程序分析1145.5贝叶斯算法特点及应用1195.5.1朴素贝叶斯分类算法1195.5.2贝叶斯信念网120思考题121第6章人工神经网络算法1226.1基本概念1226.1.1生物神经元模型1226.1.2人工神经元模型1236.1.3主要的神经网络模型1246.2BP算法原理1266.2.1Delta学习规则的基本原理1266.2.2BP网络的结构1266.2.3BP网络的算法描述1276.2.4标准BP网络的工作过程1296.3BP算法实例分析1306.4BP算法源程序分析1346.5BP算法的特点及应用1436.5.1BP算法特点1436.5.2BP算法应用1446.6小结145思考题145第7章支持向量机146
2023/9/24 16:34:35 31.33MB 数据挖掘 算法 数据仓库
1
一个基础贝叶斯变换的压缩感知,包含一个源代码和一个一维信号处理的例子和两个二维图像的例子
2023/9/24 1:53:52 90KB 贝叶斯 图像 去噪 matlab
1
利用混合高斯模型对背景图像进行多高斯分布学习,根据背景学习结果,利用贝叶斯理论对含有目标的图像进行分割。
2023/9/13 6:21:44 15KB 混合高斯模型 图像分割
1
利用贝叶斯最小错误率决策算法,对手写数字进行识别
2023/9/13 5:29:06 182KB 数字识别
1
matlab贝叶斯分类源码,数据集为UCI下载的Iris,代码包括数据预处理
2023/9/7 3:57:05 4KB matlab bayes
1
此算法的代码是稀疏贝叶斯算法的实现代码,可以直接在MATLAB中运行
2023/9/6 19:33:36 8KB SBL FM算法
1
非常经典的茆诗松的《贝叶斯统计》教材,教材有点老了,1999年版的。
2023/9/1 23:14:03 4.95MB 贝叶斯 统计学
1
adaboost演示demo(基于Matlab,学习算法包括决策树、神经网络、线性回归、在线贝叶斯分类器等),动态GUI显示学习过程、vote过程等
2023/8/28 8:23:17 13KB 机器学习
1
内容简介本书由射影几何、矩阵与张量、模型估计三个部分组成,它们是三维计算机视觉所涉及到的基本数学理论与方法。
I.射影几何学是三维计算机视觉的数学理论基础,是从事计算机视觉研究所必备的数学知识。
本书着重介绍射影几何学和它在视觉中的应用,主要内容包括:平面与空间射影几何,摄像机几何,两视点几何,自标定技术和三维重构理论。
II.矩阵与张量是描述和解决计算机视觉问题的必要数学工具,视觉领域研究人员都应该掌握这门数学。
本书着重介绍与视觉有关的矩阵、张量理论与它的应用,主要内容包括:矩阵分解,矩阵分析,张量代数,运动与结构,多视点张量。
III.模型估计是三维计算机视觉的基本问题,通常涉及到变换或某种数学量的估计。
本书着重介绍与视觉估计有关的数学理论与方法,主要内容包括:迭代优化理论,参数估计理论,视觉估计的代数方法、几何方法、鲁棒方法和贝叶斯方法。
上述三部分涉及的数学内容是相对独立的,但三维计算机视觉将它们组成一个有机的整体。
通过阅读本书,读者能掌握三维计算机视觉中的基本数学内容与方法,增强数学素养、提高分析和解决视觉问题的数学能力。
2023/8/27 4:23:33 4.27MB 计算机视觉 数学
1
共 295 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡