数据包络法(DEA)matlab代码,计算方案的相对有效率和各项指标的权重
2024/9/4 0:41:46 25KB 数据包络 DEA
1
我们在安卓上进行性能测试时,如果想获取CPU以及内存等常用性能指标,linux系统自身就提供了现成的方法,谷歌官方甚至公司内部也都提供了大量功能强大的分析工具。
而相比之下,想要获取GPU的相关指标则没那么容易,甚至我们对GPU应该使用什么指标衡量都几乎一无所知。
这一方面是由于系统没有提供相关接口与命令,另一方面似乎业界目前对于GPU的关注度不足,相关积累与沉淀较少,鉴于此,个人感觉GPU测试这一块也可以作为终端专项后面需要关注及攻克的课题。
通过这两天的调研,笔者将GPU的测试方法简单的分为两类:安卓官方提供的工具及方法;
GPU厂商提供的工具及方法。
下面将具体介绍这两类测试分析方法。
google
1
这篇论文主要探讨了中国古代玻璃制品的风化模型,利用随机森林算法进行数据分析和预测。
文章在数学建模的背景下,获得了山西省一等奖,论文的核心技术包括随机森林优化、数据填充、特征选择、降维模型和分类算法的应用。
对于问题一,研究者处理了数据中的缺失值,使用众数来填充颜色数据。
通过交叉表和卡方检验,确定了表面风化与玻璃类型之间有强相关性,与纹饰有弱相关性,与颜色则无明显关联。
通过观察化学成分的分布,如氧化铅和氧化钾含量,发现不同类型的玻璃具有特定的成分特征。
然后,他们构建了随机森林模型,以风化前后的均值偏差率预测化学成分含量,并验证了预测的准确性。
针对问题二,论文建立了基于重采样的随机森林模型来识别高钾玻璃和铅钡玻璃的分类规律。
通过对14个化学成分的分析,确定了二氧化硅、氧化钾、氧化铅和氧化钡作为关键因素。
通过投影寻踪法降低维度至5个重要成分,并利用改进的k-means聚类算法,将样本分为3个亚类,结果与实际相符。
通过调整聚类数优化损失函数,验证了初始设定的合理性。
在问题三中,研究者加入了有无风化的指标,继续使用随机森林模型预测玻璃类型,测试集预测准确率达到100%。
同时,通过支持向量机(SVM)和贝叶斯判别法结合扰动项,验证了有无风化指标对分类结果的影响,结果显示这个指标的作用不大。
此外,通过正态扰动测试随机森林模型的敏感性,证明模型的稳定性。
对于问题四,论文建立逐步回归模型,寻找不同类别化学成分间的线性关联。
通过VIF方差膨胀因子分析,确定了两类玻璃在二氧化硅、氧化钾、氧化铅和氧化钡等成分上的显著差异性,这与之前的问题二分析结果一致。
总结来说,这篇论文在数学建模的框架下,利用随机森林算法解决了古代玻璃制品风化的建模问题,包括了数据预处理、分类模型建立、特征重要性分析、降维聚类和线性关联研究等多个方面。
这些方法不仅在解决本问题上取得了良好效果,也为类似的历史文物研究提供了有价值的分析工具和思路。
2024/9/2 15:54:31 2.45MB 数学建模 随机森林
1
模电课程设计,关于音频功率放大器。
设计并制作一OCL音频功率放大器和与之匹配的直流稳压电源。
指标:PoM≥5W;
fL≤50Hz,fH≥15KHz;
中点电位≤100mV;
负载:8.2Ω;
输入电压50mV。
2024/8/31 2:19:42 312KB 模电 课程设计
1
到靶能量和光斑分布参数是评价高能激光系统性能指标的重要参数,为准确测量中红外高能激光系统远场能量和功率密度的时空分布,采用热吸收和光电探测相结合的测量方法,研制了可用于大面积、长脉冲中红外高能激光测量的复合式光斑探测阵列。
探测阵列由石墨热吸收单元和PbSe光电探测器阵列、信号调理放大电路、数据采集单元和信号处理单元等几部分组成,有效测量面积为22cm×22cm,光斑测量空间分辨率为2.2cm,时间分辨率为20ms,能量测量不确定度小于10%,功率密度测量不确定度小于15%。
采用该系统,可实现高能量、大面积中红外高能激光光斑参数的综合测量。
2024/8/30 19:09:14 4.48MB 探测器 中红外激 探测阵列 光电量热
1
本资源是推荐系统中最基本且最精但的协同过滤推荐算法实现,包括数据集,以及算法的评价指标MAE的计算,数据集采用MovieLens中两个数据集进行测试,需要别的数据集可以根据自己需要添加,只需修改Base.java文件中的配置即可,本程序配备一个readme文件,里面有程序的运行介绍,程序注释详细,希望对大家有帮助。
2024/8/26 5:29:53 551KB 协同过滤 推荐系统 推荐算法 java
1
利用不同样本选择方法进行变化检测实验的结果的好坏是通过与对应的精标准图像——GroundTruth进行相似度衡量而得到的。
总体分类精度OA(OverallAccuracy)是指正确分类的像素点数与总的像素点数的比值,是一种常用的衡量变化检测结果的指标,Kappa系数是一种能更加精确衡量分类准确度的参数,能较好的反映出两者的一致性,
2024/8/23 12:16:26 4KB 评价标准 matlab 总体分类精度 OA
1
软件程序按照发射端所掌握的各用户信道状态信息的程度共分为两部分:即完整信道状态信息(CSIT)和部分信道状态信息(CSIP)。
其中,每一部分都包括预编码(precoding)和用户调度(scheduling)。
在CSIT中,precoding又按照各用户的数据流数分为单数据流和多数据流两种情况。
在每种情况下,首先考察了不同预编码算法的性能表现,包括两种ZF、MMSE、SINR、SLNR。
之后又考察了功率分配算法的性能表现(文件名中含有PD表明其含有功率分配的过程)。
按照不同指标进行功率分配的,在文件名中进行了区分,如PD_CN代表以信道范数为参考指标进行功率分配。
Scheduling部分首先观察了RoundRobin、MaxH和MMSLNR三种算法的性能对比。
之后在Kc和Round部分分别观察了不同预选用户数和不同最大替换轮数下MMSLNR算法的表现。
在CSIP中,只对各用户单数据流的情况进行了仿真。
采用的预编码算法主要有DSLNR(即直接运用CSIT下的预编码算法)、ESLNR(即对SLNR进行均值计算的,在CSIP中,引入均值计算的与SLNR有关的算法,其文件名中都有modified以示区别)、EMMSE(即陈明老师那边的那篇文章中的预编码算法)。
Scheduling中也只是简单的观察了RoundRobin、MaxH、DMMSLNR和EMMSLNR(前者没有均值计算,后者有)的性能对比。
在各部分程序中,main以及mainX(X代表某一数字)是最终的主程序,且各种参数均在主程序的开头部分进行了说明。
主程序中,都是按照信号生成,信道生成,调度与预编码,信号接收这样的过程进行的。
2024/8/23 10:26:02 351KB 大规模MIMO Massive MIMO
1
ICDAR2013数据集评估指标检测工具,给定test结果,可以计算相应的precise,recall,hmean.
2024/8/20 7:02:10 99KB ICDAR2013 评估 precise recall
1
实现图像融合处理操作,以及融合影像质量的客观评价。
包含有主成分分析PCA、高通滤波HPF、乘积性变换和其改进型、Brovey变换及其改进型、相关系数的加权平均、IHS变换(IHS、三角IHS、圆柱体IHS及其变种)等算法,以及信息熵、平均梯度、空间频率、相关关系等客观评价指标。
1
共 460 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡