二维层状半导体材料具有独特的电子结构和量子尺寸效应,在光电子器件等领域遭到广泛关注。
其中,二维Ⅳ-Ⅵ族半导体因其具有成本低、元素丰富、对环境友好等优点,近年来成为研究热点之一。
介绍了二维Ⅳ-Ⅵ族半导体的独特晶体结构,总结了机械剥离、液相法、气相沉积等制备方法的研究进展,讨论了二维Ⅳ-Ⅵ族半导体在场效应晶体管和光电器件领域的研究现状,并针对制备和器件应用方面存在的问题及今后的研究方向提出了建议。
2020/10/19 4:27:19 14.47MB 材料 二维材料 Ⅳ-Ⅵ族半 电子器件
1
二维层状半导体材料具有独特的电子结构和量子尺寸效应,在光电子器件等领域遭到广泛关注。
其中,二维Ⅳ-Ⅵ族半导体因其具有成本低、元素丰富、对环境友好等优点,近年来成为研究热点之一。
介绍了二维Ⅳ-Ⅵ族半导体的独特晶体结构,总结了机械剥离、液相法、气相沉积等制备方法的研究进展,讨论了二维Ⅳ-Ⅵ族半导体在场效应晶体管和光电器件领域的研究现状,并针对制备和器件应用方面存在的问题及今后的研究方向提出了建议。
2020/10/19 4:27:19 14.47MB 材料 二维材料 Ⅳ-Ⅵ族半 电子器件
1
以波动方程和受激拉曼散射(SRS)物质方程为基础,采用光种子法,建立了固体相干反斯托克斯拉曼频移器的归一化耦合波方程,研讨了晶体中反斯托克斯光转换效率。
在脉冲抽运条件下分析了归一化增益系数G、归一化相位失配系数ΔK以及一阶斯托克斯光种子的归一化光场振幅ψs0三个变量对固体相干反斯托克斯拉曼频移器的影响,并作出了一系列相应曲线,由所得曲线估算了各归一化变量的合理取值范围。
分析结果表明,在ΔK=0时,通过增大ψs0来打破拉曼增益抑制的影响,其转换效率峰值可达到44%。
而当ψs0较弱时,可选取合适的相位失配系数,反斯托克斯光转换效率可达40%。
2015/8/26 22:14:19 2.96MB 激光器 相干反斯 斯托克斯 固体拉曼
1
SSS1700是3S高度集成的单片USB音频控制器,带有片上振荡器将外部12MHz晶体组件保存在耳机应用程序中。
SSS1700功能支持96KHz24位采样率,带外部音频编解码器(24位/96KHzI2S输入和输出),并具有内置立体声16/24位ADC、立体声16/24位DAC、耳机驱动器、五频段硬件EQ、,音频锁相环,USB时钟振荡器,和USBFS控制器加物理层。
外部24C02~24C16EEPROM连接为USBVID/PID/产品字符串、默认增益设置提供了灵活性,以及其他定制需求。
SSS1700为特色USB提供了最低BOM处理方案Windows/MAC/Android操作系统中的音频处理方案。
1
构建晶体塑性模型,晶粒之间的动力学关系,可以预测晶体取向、晶粒形状、织构等
2022/10/30 8:42:02 162KB ABAQUS 黄永刚 fortrancode 晶体塑性
1
基于中等带宽滤波器设计中,通带宽度等相关因素进行分析,涉及晶体谐振器和变量器等相关参数设计。
采用中等带宽滤波器电路,通过对晶体谐振器的动态电感、电阻、Q值,变量器Q值和并联LC调谐回路温度特性进行分析,得到了宽通带、小通带波动、高阻带衰耗的晶体滤波器,并给出了实例阐述实现滤波器的方法。
通过测试结果与设计技术目标的对比,表明设计方案可以满足产品的技术要求。
1
光子晶体的计算方法,包括传输矩阵法,时域有限差分法等四种,运用四种不同的计算方法在理论上研究了光子晶体.通过平面波展开法计算光子晶体的频带结构,结合多重散射法研究光子晶体的透射谱,调查不同结构的带隙规律和对入射光的影响.对于二维光子晶体,同一结构对入射光波的影响与入射光的偏振态有关.TE模和TM模的频带结果表明,两者在较低几级布拉格反射区均能产生较宽的完全带隙.用多重散射法研究三维光子晶体的透射与反射性质,并推导出含缺陷层的转移矩阵.
2017/2/21 19:13:45 2.4MB 光子晶体计算
1
插装表贴按键按钮封装LED灯有源无源晶体晶振封装AltiumAD元件库PCB封装库,PcbLib后缀文件,包括102个插装表贴按键按钮LED灯有源无源晶体晶振等封装文件,均已测试使用过,可以直接使用到你的项目设计中。
1
matlab源程序,可以迅速得到布拉格衍射峰的峰位、峰强以及半峰宽
2022/10/20 4:51:45 1KB 光子晶体 布拉格衍射峰
1
光纤光学华中科大刘德明第一章引见第二章光纤光学的基本方程第三章阶跃折射率分布光纤第四章渐变折射率分布光纤第五章光纤的特征参数与测试技术第六章光纤无源及有源器件第七章光纤的连接与耦合第八章光子晶体光纤第九章特种光纤与光缆第十章光纤应用技术
2020/3/11 5:46:41 6.62MB 光纤光学 刘德明
1
共 123 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡