构建了基于混合锁模机制的双向运转掺铒光纤激光器。
激光器采用σ型腔,腔内无隔离装置,以反射式半导体可饱和吸收镜和非线性偏振旋转效应为混合锁模机制,通过精细调节聚焦到半导体可饱和吸收镜上的激光光斑大小和腔内波片的角度,实现了稳定的自启动双向锁模运转。
激光器运转在孤子锁模状态,腔内双向运转的2个脉冲分别由2个偏振分束器耦合输出。
输出的2个脉冲序列重复频率相同,为60.72MHz;
逆时针、顺时针方向输出功率分别为23.7mW和1.3mW,信噪比分别为67.5dB和66.5dB。
逆时针、顺时针方向输出功率相差较大,这是由采用的锁模机制造成的。
2023/7/22 14:17:23 3.64MB 激光器 光纤激光 双向锁模 混合锁模
1
东南大学半导体考研真题及刘邓科课件!祝各位考研成功!1
2023/7/21 17:47:37 4.11MB 03 4 10
1
cameralink标准协议,用于cameralink相机图像解析,半导体行业硬件设计。
2023/7/21 13:28:51 144KB FPGA cameralink
1
提出了一种结合最小误差熵和最优控制策略开发的具有不确定计量延迟的半导体Craft.io运行控制方法。
在大多数半导体Craft.io中,上一次运行的产品质量数据在下一次运行开始之前通常不可用。
因此,校正步骤通常被延迟一批次或更多,并且延迟的持续时间具有随机特性是不确定的。
再加上不正确的过程模型,即使使用指数加权移动平均值(EWMA)控制器,延迟也可能导致过程输出的显着变化。
从概率的角度出发,提出了一种处理不确定的计量延迟的新方法。
首先要重新检查运行控制系统的基本原理,然后通过将熵(或信息势)和跟踪误差的平均值与控制输入能量的约束相结合来给出创新的性能指标。
针对扰动和时延不是高斯的过程,提出了一种基于概率密度函数(PDF)的最优控制算法,并对算法的稳定性进行了分析。
另外,所提出的控制策略的方法被扩展为包括递归PDF估计和在线实时实施。
本文还包括钨化学气相沉积Craft.io的最小熵控制的仿真示例,以说明该方法。
此外,通过对常规EWMA方法和提出的方法进行比较,以显示我们提出的方法的优点。
2023/7/18 21:37:29 512KB Minimum entropy; Probability density
1
有关矢量控制电机[FOC]的入门基础材料,FOC是现在电机控制的趋势:因为半导体芯片IC,电力电子元件等等价格越来越便宜,而全球以能耗越来越关注,能源问题越来越占更大的比重,智能化产品客户需求现实等,所以更高级[NeuralNetworks,FuzzySystemsandGeneticAlgorithms,FOC等等]的电机控制技术是必须的必然的唯一的!推荐对电机拖动感兴趣的可以参考下此书
1
根据π相移光纤光栅的温度可调谐原理,使用半导体制冷器(TEC)和制冷片控制π相移光纤光栅的温度,从而改变其中心波长。
随着温度升高,π相移光纤光栅的中心波长向长波方向线性漂移,温度从0℃变化到95℃时,中心波长从1548.921nm变化到1550.664nm,波长改变量为1.743nm,灵敏度约为18.35pm/℃。
为了验证π相移光纤光栅温度调谐的特性,采用与其匹配的高反光纤光栅构成了C波段环形腔光纤激光振荡器,利用π相移光栅的窄带滤波特性实现了窄线宽激光输出,并通过控制π相移光栅的温度实现了输出激光波长的连续调谐。
2023/7/10 17:17:32 3.51MB 光栅 温度调谐 π相移光 窄线宽激
1
日本开发光晶格钟160亿年才产生1s误差;新型电抽运半导体激光器提高成像质量;纳米光学天线或将取代受激光辐射激光器;科学家实现多自由度量子体系隐形传态;阿拉伯世界开辟阿秒科学前哨;新型超高时空分辨率超分辨成像技术;首个直接兼容硅晶片的锗锡半导体激光器
2023/7/9 8:21:23 2.81MB 论文
1
ARM-Cortex-M底层技术,半导体工艺部分,IDE技术部分,工具链技术部分,分散加载技术部分,启动代码技术部分,硬件设计技术部分等
2023/7/8 19:30:54 4.25MB ARM Cortex
1
本书系统地介绍了光纤的传输理论;半导体激光器的了作原理、性质,光源的直接凋制和间接调制;光接收机的组成,噪声的分析和接收机灵敏度的计算;单信道和WDM数字光纤传输系统的组成、关键技术和总体设计;光网络的发展概况和类型,光传送网和自动交换光网络的结构、原理、关键技术和应用;大容量长距离光纤传输中的影响因素及其支撑技术等。
本书力求理论上的系统性、技术上的时新性和应用上的实用性。
.
2023/7/7 10:26:26 97.01MB 光纤通信
1
半导体激光器经典教材
2023/7/4 12:10:11 16.6MB diode laser
1
共 180 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡