对同步辐射红外光束线中由两个相同光学参数的超环面镜组成的对称式光学系统的像差和超环面镜缩放比之间的关系进行分析。
计算结果表明,使用3倍压缩比的超环面镜可将上海光源同步辐射红外光束线站BL06B的500μm波长的红外光在金刚石化学蒸汽沉积(CVD)窗上的透射率优化到50%左右;
光学设计软件Zemax光线追迹结果表明,该对称式结构的像差不影响中红外光束的聚集功能。
SynchrotronRadiationWorkshop模拟计算结果表明,使用3倍压缩比的超环面镜和直径15mm的金刚石CVD窗获得的光子通量与使用1倍压缩比的超环面镜和直径45mm的金刚石CVD窗获得的光子通量相当,但前者的碳峰吸收约为后者的37%。
由两个3倍压缩比的超环面镜组成的对称式光学结构在兼顾近中红外功能的同时,优化了同步辐射红外光束线在远红外波段的功能。
2022/9/4 4:30:24 5.25MB 光学设计 同步辐射 优化设计 像差
1
完成光线跟踪算法,构造一个虚拟场景。
2022/9/2 22:54:45 11KB 光线跟踪算法 opengl c++
1
matlab渐晕仿真。
渐晕是离轴越远的光线经过光学系统的有效孔径阑越小,所以越离轴的光线在离轴的像面上的光强度就越弱,而构成影像由中心轴向离轴晕开。
简单来说,就是轴外光束被拦截的现象称为"渐晕"。
2019/4/3 12:19:08 849B matlab 渐晕 仿真
1
在自然界中,光源发出的光线向前传播,最后到达一个妨碍它继续传播的物体表面,我们可以将“光线”看作在同样的路径传输的光子流,在完全真空中,这条光线将是一条直线。
但是在现实中,在光路上会遭到三个因素的影响:吸收、反射与折射。
物体表面可能在一个或者多个方向反射全部或者部分光线,它也可能吸收部分光线,使得反射或者折射的光线强度减弱。
如果物体表面是透明的或者半透明的,那么它就会将一部分光线按照不同的方向折射到物体内部,同时吸收部分或者全部光谱或者改变光线的颜色。
吸收、反射以及折射的光线都来自于入射光线,而不会超出入射光线的强度。
例如,一个物体表面不可能反射66%的输入光线,然后再折射50%的输入光线,因为这二者相加将会达到116%。
这样,反射或者折射的光线可以到达其它的物体表面,同样,吸收、反射、折射的光线重新根据入射光线进行计算。
其中一部分光线通过这样的途径传播到我们的眼睛,我们就能够看到最终的渲染图像及场景。
2016/11/27 9:53:58 1011B Android
1
四、光栅方程的一般方式与谱线弯曲在(式中所表示的光栅方程,仅是光线在光栅主截面内入射和衍射的特殊情况。
在实际的光谱仪器中,狭缝都是有一定高度的。
从缝上不同点发出的光束都是以不同的角度斜入射到光栅面上,即这些光束是对主截面倾斜的。
经光栅衍射后的衍射光束显然也不在主截面上,并且其衍射角也不等于在主截面上的、由狭缝中点发出的光束的衍射角,这就和棱镜一样会导致光谱线的弯曲。
为求得斜入射情况下光栅的衍射,即光栅方程的一般方式,首先在光栅上建立一个直角坐标系:把直角坐标系置于光的原点平面和光栅表面重合,轴平栅面的中心;
行于光栅刻痕;
轴即为通过光栅中心的法线,平面即为主截面。
如图所示,使狭缝端点发出的斜射主光线通过坐标原点,另一条与点,之平行的相邻光线入射到光栅上的点的坐标是。
从点向和它的衍射光线分别作垂线,垂足。
则和是是这两条相邻入射光线的光程差,是两条相应的相邻衍射光线的光程差,总光程差为
2019/7/16 13:37:20 7.29MB 光谱仪器原理
1
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡