多波长放大是能够有效抑制窄线宽光纤放大器中受激布里渊散射(SBS)效应的一种新方法。
对其基本理论进行了详细的介绍,并按照波长间隔的不同将其分为大波长间隔和小波长间隔多波长放大两种类型。
综述了这两类多波长放大方法在理论研究和实验研究方面取得的重要成果,分析了它们各自由抑制SBS上的优势,指出大波长间隔多波长放大在提高单频激光输出功率方面具有明显优势,而小波长间隔多波长放大在进一步提升高功率光纤激光相干合成系统功率方面具有巨大的应用价值。
1
matalb绘制Schaffer'sf6三维函数图形的代码,内含两种方式
2018/9/23 21:43:13 463B Schaffer's f matlab 三维函数图形
1
JS连接tsc打印条形码可也以打印二维码,内含打印这两种的源码,整理好的,亲测可用。
压缩包里的驱动是tscTTP-244-Pro的驱动,你可以根据本人的机型下载对应的驱动安装。
其他配置不变。
2018/11/7 2:46:25 21.22MB JS 条形码 TSC 二维码
1
采用基于密度泛函理论(DFT)的第一性原理计算了Ce,S单掺杂及Ce/S共掺杂锐钛矿型二氧化钛(TiO2)的能带结构、态密度和光学性质。
结果表明:掺杂后晶格常数均变大,禁带宽度均减小,其中Ce/S共掺杂后由于S-3p电子轨道和Ce-4f电子轨道的共同作用引入了杂质能级,使得禁带宽度最小,吸收光谱发生红移;
此外,Ce具有Ce4+和Ce3+两种可变价态,具有良好的电子迁移性质,阻止了电子和空穴之间的复合,预测了Ce/S共掺杂可提高TiO2的光催化功能。
2015/4/4 20:22:47 7.16MB 材料 Ce/S共掺 第一性原 态密度
1
1、设计一个程序实现基于优先数的时间片轮转调度算法调度处理器。
2、假定系统有5个进程,每个进程用一个进程控制块PCB开代表,进程控制块的结构如下图1.2所示:进程名指针到达时间要求运行时间已运行时间优先数进程状态图1其中:进程名:作为进程的标识。
指针:进程按顺序排成循环链表,用指针指出下一个进程的进程控制块首地址,最后一个进程中的指针指出第一个进程的进程控制块首地址。
要求运行时间:假设进程需要运行的单位时间数。
已运行时间:假设进程已经运行的单位时间数,初值为0。
状态:可假设有两种状态,就绪状态和结束状态。
进程的初始状态都为就绪状态。
3、每次运行所设计的处理器调度程序调度进程之前,为每个进程任意确定它的要求运行时间。
4、此程序是模拟处理器调度,因而,被选中的进程并不实际启动运行,而是执行已运行时间+1来模拟进程的一次运行,表示进程已经运行过一个单位时间。
.5、在所设计的程序中应有显示或打印语句,能显示或打印每次被选中的进程名以及运行一次后进程队列的变化。
6、为进程任意确定要求运行时间,运行所设计的处理器调度程序,显示或打印逐次被选中进程的进程名以及进程控制块的动态变化过程。
7、设有一个就绪队列,就绪进程按优先数(优先数范围0-100)由小到大排列(优先数越小,级别越高)。
当某一进程运行完一个时间片后,其优先级应下调(如优先数加2或3)。
8、例如一组进程如下表:进程名 A B C D E F G H J K L M到达时间 0 1 2 3 6 8 12 12 12 18 25 25服务时间 6 4 10 5 1 2 5 10 4 3 15 8
2016/11/16 18:44:42 3KB
1
在快速傅里叶变换(FFT)方法处理单幅干涉图原理的基础上,提出一种基于样本块匹配的干涉图延拓方法,利用干涉图像的可信度和等照度线特征,来确定待填充块的优先权,然后在干涉图的已知区域寻找与待填充块最相似的样本块来进行填充。
充分利用了干涉图的条纹特征,结合梯度变化方向有效地合成纹理信息,具有很好的延拓效果。
最后将该干涉图延拓方法与傅里叶变换,合适的滤波函数和相位解包方法结合起来构成整套单幅干涉图处理方法。
采用该单幅干涉图处理方法获得的波面峰谷值与Zygo移相干涉仪得到的平均相差不到λ/100,并且两种方法获得的波面均方根值平均相差不到λ/200。
2019/10/18 9:53:20 1.99MB 光学测量 干涉图延 样本块匹
1
基于人工神经网络的理论,用BP神经网络逼近一组给定的数值,并在MATLAB的环境下得出实验结果。
分析了BP网络的隐层神经元个数,传递函数及训练函数对网络功能的影响,最后用多项式拟合的方法对这组数据进行处理,提供了基于多项式拟合函数逼近的实验数据,并对两种方法的实验结果进行了分析。
2021/10/27 16:32:40 252KB 神经网络 matlab
1
本程序实现了计算机图形学中基本图形:直线、圆、以及椭圆的绘制。
其中直线可采用DDA画线算法与Bresenham画线算法两种方法绘制;
圆采用了中点圆画线算法绘制;
椭圆采用了中点椭圆画线算法绘制。
此外还实现了对图形的平移、旋转和缩放三种基本操作。
其中缩放操作提供了普通模式与智能模式,使用后者可以消弭普通模式缩放时产生的像素稀疏以及锯齿化现象。
同时新版本对操作界面进行了改进和优化。
2018/7/3 21:48:41 280KB 中点圆 中点椭圆 DDA Bresenham
1
关于代码的引见可以参考https://blog.csdn.net/qq_41562704/article/details/88975569,代码基于Win10+Python3.7环境,对采集的图片进行了图像平滑,基于OTSU阈值的肤色分割,基于八邻域搜索法进行轮廓检测操作,最终完成了手势图片从采集到轮廓曲线的提取过程,对已得到的轮廓曲线提取其傅里叶描述子和椭圆傅里叶描述子,并分别进行了归一化处理。
用KNN和SVM两种算法训练模型,以自己采集数据集为训练集进行了训练,最后基于PyQt5制作了简易界面。
2022/9/28 3:55:24 142.52MB 手势识别 傅里叶算子 SVM 机器学习
1
运用最小二乘法拟合y=ae^(bx)型曲线,包括了求对数后拟合和直接拟合两种方法,后者的拟合精确度最高,并给出了均方误差和最大偏差点。
2020/10/9 3:03:54 4KB C 最小二乘法 科学计算
1
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡