使用matlab实现user-basedcollaborativefiltering,实验数据集为movielens100k。
2025/3/24 5:32:30 10.54MB 协同过滤
1
微软coco数据集中测试集2014:test2014.zip。
这只是图片数据,而没有标签数据,因为coco数据集中的测试数据集根本就没有标签数据
2025/3/22 8:36:34 49B test2014 coco数据集 MSCOCO
1
这是part2。
使用说明看这里:https://blog.csdn.net/yj13811596648/article/details/88746350
2025/3/21 2:04:25 150.17MB 语音识别 说话人识别
1
头条新闻文本分类数据集,包括11个类别,近50万条数据,文本内容为新闻标题+提取的关键词,分为训练数据和验证数据两个文件
1
通过MATLAB实现了最小生成树算法中的Kruskal算法,而且可以通过设置阈值进行聚类(包含数据集哟)
2025/3/20 1:48:11 8KB Kruskul
1
印第安人糖尿病数据集,波士顿房价数据集合集。
用于数据回归分析等。
2025/3/19 7:37:52 21KB housing.csv pima_data.cs
1
Houston 2013数据集是一个结合了高光谱成像(HSI)与激光雷达(LiDAR)技术的数据集,主要用于遥感与地理信息系统研究领域。
该数据集针对地理信息的精确分析,包含了丰富的空间维度信息和光谱维度信息,使得它在地表覆盖分类、城市环境监测、农业遥感等多个领域具有重要的研究价值。


具体来说,高光谱成像技术能够在连续的光谱波段范围内获取地物的光谱信息,HSI数据集因而包含了成千上万的光谱波段,能够反映出地物在不同波长下的反射特性。
这些信息对于识别和分类不同的地物类型,如植被、水体、人造地物等具有重要意义。


另一方面,激光雷达技术通过发射激光脉冲并测量反射回来的信号来获得地表的高精度三维结构信息。
LiDAR数据集通常包括地物的高度信息、形状细节以及地表粗糙度等特征,这些信息对于地形分析、建筑物建模以及树木高度测量等方面至关重要。


Houston 2013数据集将HSI与LiDAR数据集分别划分为测试集和训练集,这样的划分可以用于开发和评估地表分类和遥感影像解译算法。
在遥感影像解译中,测试集用于验证算法的准确性,而训练集则用于训练分类器或机器学习模型,使得模型能够学习如何区分不同的地物类别。


该数据集的文件名称列表揭示了数据集的结构,其中HSI_TeSet.mat和HSI_TrSet.mat分别代表了高光谱成像数据集的测试集和训练集,LiDAR_TeSet.mat和LiDAR_TrSet.mat分别代表了激光雷达数据集的测试集和训练集。
TeLabel.mat和TrLabel.mat则可能包含了对应测试集和训练集的标签信息,即每一块地物的具体类别标签。


在处理这些数据集时,研究者需要熟悉遥感影像分析的常用工具和方法,例如使用ENVI、ArcGIS、ERDAS Imagine等软件对HSI数据进行预处理和分析,以及使用Terrascan、LIDAR360等软件对LiDAR数据进行点云处理。
除此之外,深度学习方法,特别是卷积神经网络(CNN)在处理HSI数据中也显示出强大的能力,它可以自动提取和学习光谱特征,对于提高分类精度具有显著效果。


Houston 2013数据集通过提供两种不同的遥感技术所获得的综合数据集,为遥感领域的研究者提供了一个宝贵的实验平台,使得他们可以在此基础上开发和测试新的地表分类算法和模型,进而推动遥感技术在环境监测与分析中的应用与发展。
2025/3/18 14:41:47 13.69MB 数据集 LIDAR数据
1
基于GPT2模型的5言和7言诗歌生成的测试项目,使用pytorch框架,里面包含了几万首古诗和已经编好码的字典和数据集,由于模型太大,上传不便,大家自己跑一下训练代码就可以了,跑了20轮之后的模型,目测效果还可以,至少我本人是写不出来这些诗歌了,哈哈
2025/3/14 19:52:11 27.24MB GPT2 pytorch 深度学习
1
聚类分析常用的人工数据集,包括:UCI:wine、Iris、yeast,还有4k2_far、leuk72_3k等数据集。
它们在聚类分析、数据挖掘、机器学习、模式识别领域经常用到。
2025/3/14 17:32:50 32KB 聚类数据 UCI
1
包括高光谱和lidar数据
2025/3/14 16:51:33 449MB 数据集
1
共 1000 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡