Chan-Vese算法是一个非常有效的图像分割算法,他是根据偏微分方程迭代求出最佳的分割方式,文件夹中包含了相关的代码和相关示例
2024/8/6 20:31:29 5.8MB Chan-Vese 图像分割
1
matlab程序(偏微分方程的数值解法)
1
MATLAB求解PDE(偏微分)方程工具箱及示例,内含工具箱及示例,可以快速学习掌握
2024/8/4 14:24:25 104KB matlab PDE toolbox 示例
1
针对目前欠驱动船舶航迹跟踪控制难以实现跟踪任意可行航迹问题,提出一种运动规划方法。
利用多项式拟合,并结合船舶动力学模型,通过离散期望点规划出操作性可实现的全部期望姿态。
同时,为实现欠驱动船舶的航迹快速跟踪控制,提出一种全局指数航迹跟踪控制律。
引入微分同胚变换,建立两个级联的子系统构成的航迹跟踪误差动态方程;
基于反步法的设计原理,运用Lyapunov直接方法对变换后的误差系统设计了全局指数航迹跟踪控制律。
仿真结果验证了所提出的全局指数航迹跟踪控制律能够有效实现跟踪任意可行航迹。
2024/7/30 12:11:15 622KB 论文研究
1
周义仓编常微分方程习题答案,很好很强大。
2024/7/29 7:44:55 956KB 答案
1
EngineeringEquationSolver(EES)工程方程求解器主要由美国最顶尖公立大学之一UniversityofWisconsin-Madison机械系SanfordAKlein教授开发。
EES核心模块式是美国国标局NIST物性参数软件包REFPROP(ReferenceFluidThermodynamicandTransportPropertiesDatabase)的基础。
EES是一款通用的方程求解程序,它可以数值化求解数千连接的非线性代数和微分方程。
该程序还可以用来解决微分和积分方程,做优化,提供了不确定性分析,进行线性和非线性回归,转换单位,检查单位的一致性,并生成出版质量的情节。
EES的一个主要特征是其高精确度的热力学和传输性质的数据库,提供了数百物质的方式来增强求解能力。
此软件只作交流学习之用,严禁用于商业用途。
请支持正版!
2024/7/26 11:55:21 6.46MB 绿色 破解版
1
matlab利用龙格库塔放法计算延时微分方程
2024/7/24 20:17:52 1KB 龙格库塔 延时微分方程 matlab
1
【内容介绍】本书以仿真应用为中心,系统、详细地讲述了过程控制系统的仿真,并结合MATLAB/Simulink仿真工具的应用,通过大量经典的仿真实例,全面讲述过程控制系统的结构、原理、设计和参数整定等知识。
全书分为基础篇、实战篇和综合篇。
基础篇包括过程控制及仿真概述、Simulink仿真基础、Simulink高级仿真技术,以及过程控制系统建模;
实战篇包括PID控制、串级控制、比值控制、前馈控制、纯滞后和解耦控制系统;
综合篇包括典型过程控制系统及仿真。
本书的特点是理论与仿真紧密结合,用仿真实例说话,通过仿真来加深对过程控制理论的理解,帮助读者掌握过程系统的分析、设计与整定等技术,切实缩短书本知识与实际应用的距离。
本书可作为自动化、信息、机电、测控、化学工程、环境工程、生物工程等专业的教材或参考书,也可供从事过程控制工程的人使用,对从事过程控制应用研究的研究生和研究人员也很有参考价值。
【本书目录】基础篇第1章过程控制及仿真概述 1.1过程控制系统概述1.1.1系统结构1.1.2系统特点1.1.3系统分类 1.2过程控制系统的性能指标1.2.1过渡过程性能指标1.2.2误差性能指标 1.3过程控制理论的发展现状 1.4过程控制系统仿真基础1.4.1计算机仿真基本概念1.4.2仿真在过程控制中的应用  1.5Simulink在过程仿真中的优势 1.6本章小结第2章Simulink仿真基础 2.1Simulink仿真概述2.1.1Simulink的启动与退出2.1.2Simulink模块库 2.2Simulink仿真模型及仿真过程2.2.1Simulink仿真模型组成2.2.2Simulink仿真的基本过程 2.3Simulink模块的处理2.3.1Simulink模块参数设置2.3.2Simulink模块基本操作2.3.3Simulink模块连接 2.4Simulink仿真设置2.4.1仿真器参数设置2.4.2工作空间数据导入2.4.2导出设置 2.5Simulink仿真举例 2.6本章小结 习题与思考第3章Simulink高级仿真技术 3.1Simulink子系统及其封装3.1.1创建子系统3.1.2封装子系统3.1.3封装的查看和解封装3.1.4子系统实例 3.2S函数设计与应用3.2.1S函数设计模板3.2.2S函数设计举例 3.3使用Simulink仿真命令 3.4Simulink仿真建模的要求 3.5Simulink控制系统仿真实例 3.6本章小结 习题与思考第4章过程控制系统建模 4.1过程模型概述4.1.1过程建模的目的和要求4.1.2过程模型类型4.1.3自衡过程与非自衡过程 4.2常见的过程模型类型4.2.1自衡非振荡过程4.2.2无自衡非振荡过程4.2.3自衡振荡过程4.2.4具有反向特性的过程 4.3过程建模基础4.3.1过程建模法分类4.3.2阶跃响应法建模4.3.3过程模型的特点 4.4单容过程模型4.4.1无自衡单容过程4.4.2自衡单容过程 4.5多容过程模型4.5.1有相互影响的双容过程4.5.2无相互影响的双容过程 4.6模型参数对控制性能的影响4.6.1静态增益的影响4.6.2时间常数的影响4.6.3时滞的影响 4.7本章小结 习题与思考实战篇第5章PID控制 5.1PID控制概述 5.2PID控制算法5.2.1比例(P)控制5.2.2比例积分(PI)控制5.2.3比例微分(PD)控制5.2.4比例积分微分(PID)控制 5.3PID控制器参数整定5.3.1Ziegler-Nichols整定法5.3.2临界比例度法5.3.3衰减曲线法 5.4本章小结 习题与思考第6章串级控制系统 6.1串级控制系统概述6.1.1基本概念6.1.2基本组成6.1.3串级控制的特点 6.2串级控制系统性能分析6.2.1抗扰性能6.2.2动态性能6.2.3工作频率6.2.4自适应能力 6.3串级控制系统设计6.3.1副回路选择6.3.2主、副控制器的设计 6.4串级控制参数整定6.4.1逐次逼近法6.4.2两步法6.4.3一步法 6.5综合仿真实例6.5.1串级与单回路控制对比仿真6.5.2串级控制的参数整定仿真6.5.3串级控制系统设计
2024/7/19 22:16:27 8.46MB 过程控制工程及仿真 MATLABSimulink
1
PID电机控制目录第1章数字PID控制1.1PID控制原理1.2连续系统的模拟PID仿真1.3数字PID控制1.3.1位置式PID控制算法1.3.2连续系统的数字PID控制仿真1.3.3离散系统的数字PID控制仿真1.3.4增量式PID控制算法及仿真1.3.5积分分离PID控制算法及仿真1.3.6抗积分饱和PID控制算法及仿真1.3.7梯形积分PID控制算法1.3.8变速积分PID算法及仿真1.3.9带滤波器的PID控制仿真1.3.10不完全微分PID控制算法及仿真1.3.11微分先行PID控制算法及仿真1.3.12带死区的PID控制算法及仿真1.3.13基于前馈补偿的PID控制算法及仿真1.3.14步进式PID控制算法及仿真第2章常用的PID控制系统2.1单回路PID控制系统2.2串级PID控制2.2.1串级PID控制原理2.2.2仿真程序及分析2.3纯滞后系统的大林控制算法2.3.1大林控制算法原理2.3.2仿真程序及分析2.4纯滞后系统的Smith控制算法2.4.1连续Smith预估控制2.4.2仿真程序及分析2.4.3数字Smith预估控制2.4.4仿真程序及分析第3章专家PID控制和模糊PID控制3.1专家PID控制3.1.1专家PID控制原理3.1.2仿真程序及分析3.2模糊自适应整定PID控制3.2.1模糊自适应整定PID控制原理3.2.2仿真程序及分析3.3模糊免疫PID控制算法3.3.1模糊免疫PID控制算法原理3.3.2仿真程序及分析第4章神经PID控制4.1基于单神经元网络的PID智能控制4.1.1几种典型的学习规则4.1.2单神经元自适应PID控制4.1.3改进的单神经元自适应PID控制4.1.4仿真程序及分析4.1.5基于二次型性能指标学习算法的单神经元自适应PID控制4.1.6仿真程序及分析4.2基于BP神经网络整定的PID控制4.2.1基于BP神经网络的PID整定原理4.2.2仿真程序及分析4.3基于RBF神经网络整定的PID控制4.3.1RBF神经网络模型4.3.2RBF网络PID整定原理4.3.3仿真程序及分析4.4基于RBF神经网络辨识的单神经元PID模型参考自适应控制4.4.1神经网络模型参考自适应控制原理4.4.2仿真程序及分析4.5基于CMAC(神经网络)与PID的并行控制4.5.1CMAC概述4.5.2CMAC与PID复合控制算法4.5.3仿真程序及分析4.6CMAC与PID并行控制的Simulink仿真4.6.1Simulink仿真方法4.6.2仿真程序及分析第5章基于遗传算法整定的PID控制5.1遗传算法的基本原理5.2遗传算法的优化设计5.2.1遗传算法的构成要素5.2.2遗传算法的应用步骤5.3遗传算法求函数极大值5.3.1遗传算法求函数极大值实例5.3.2仿真程序5.4基于遗传算法的PID整定5.4.1基于遗传算法的PID整定原理5.4.2基于实数编码遗传算法的PID整定5.4.3仿真程序5.4.4基于二进制编码遗传算法的PID整定5.4.5仿真程序5.5基于遗传算法摩擦模型参数辨识的PID控制5.5.1仿真实例5.5.2仿真程序第6章先进PID多变量解耦控制6.1PID多变量解耦控制6.1.1PID解耦控制原理6.1.2仿真程序及分析6.2单神经元PID解耦控制6.2.1单神经元PID解耦控制原理6.2.2仿真程序及分析6.3基于DRNN神经网络整定的PID解耦控制6.3.1基于DRNN神经网络参数自学习PID解耦控制原理6.3.2DRNN神经网络的Jacobian信息辨识6.3.3仿真程序及分析第7章几种先进PID控制方法7.1基于干扰观测器的PID控制7.1.1干扰观测器设计原理7.1.2连续系统的控制仿真7.1.3离散系统的控制仿真7.2非线性系统的PID鲁棒控制7.2.1基于NCD优化的非线性优化PID控制7.2.2基于NCD与优化函数结合的非线性优化PID控制7.3一类非线性PID控制器设计7.3.1非线性控制器设计原理7.3.2仿真程序及分析7.4基于重复控制补偿的高精
2024/7/16 13:07:56 5.56MB PID
1
C#科学计算讲义-宋叶志-人民邮电出版社内容概要《C#科学计算讲义》较为详细地介绍了科学计算方法,并对算法给出了源代码。
关于算法部分主要介绍了线性方程组的迭代解法与直接解法、正交变换与最小二乘计算方法、鲁棒估计、随机数的产生、插值法、非线性方程求解、多元非线性最优化算法、微分方程数值方法等内容。
本书还给出了C#程序设计的基本方法,并对科学计算中要用到的矩阵向量类的构造做了详细阐述。
算法的实现本身不限于具体的语言,本书对于算法的描述是较为详细的,所以读者也很容易把算法改用Fortran、MATLAB、C++、Java等语言编程实现。
宋叶志、徐导和何峰编著的《C#科学计算讲义》适合作为大学理工科本科生或研究生计算方法、数值分析课程的教材或参考书。
对于从事相关学科教学的教师,如果不熟悉现代编程语言,也可以选择本书作为工具书。
本书还可以用作科研人员的工程计算工具书与算法集。
另外,在一些需要进行数据处理与分析的公司,如数量金融、统计等行业,也可以选用本书作为培训教材,或直接应用书上的源代码进行软件开发。
书籍目录第1章 C#程序设计基础 1.1 计算机、程序设计与算法 1.1.1 计算机结构 1.1.2 操作系统 1.1.3 机器语言与高级语言 1.1.4 程序设计与算法 1.2 C#历史与概述 1.2.1 C语言:结构化编程语言的高峰 1.2.2 C++语言: 面向对象与大型程序 1.2.3 Java语言:可移植、安全性与Internet 1.2.4 C#:.NET主打语言 1.3 集成开发环境介绍 1.4 面向对象程序设计 1.4.1 封装 1.4.2 多态 1.4.3 继承 1.5 数据类型与运算符 1.5.1 简单数据类型 1.5.2 数组 1.5.3 运算符 1.5.4 赋值运算符 1.6 程序控制结构 1.6.1 顺序结构 1.6.2 分支结构 1.6.3 循环结构 1.6.4 控制结构的嵌套 1.7 类的设计及对象实现 1.7.1 定义类 1.7.2 创建对象 1.7.3 方法 1.7.4 构造函数 1.7.5 析构函数与垃圾回收 1.8 运算符重载及索引器 1.8.1 运算符重载 1.8.2 索引器 1.8.3 面向对象思想在C#程序设计中的重要性 1.9 GUI编程 1.10 本章小结第2章 线性方程组迭代解法 第3章 线性方程组的直接解法第4章 正交变换与最小二乘计算方法第5章 鲁棒估计第6章 随机数第7章 插值法第8章 非线性方程数值解法第9章 非线性最优化第10章 常微分方程(组)的数值方法附录A C# 数值代数类的抽象与设计 附录B 动态链接库与混合编程 B.1 静态链接库与动态链接库 B.2 C#调用Fortran动态链接库范例 B.3 调用可执行函数 附录C Linux下C#开发与跨平台编程介绍 C.1 Mono简介 C.2 Linux下C#IDE开发范例 参考文献 
2024/6/30 17:14:25 57.93MB C# 科学计算 宋叶志 人民邮电
1
共 349 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡